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Figure S1: 2D spectra of NIR dyes. 2D excitation-emission spectra of the hexamer and 

octamer NIR dyes. Due to the cut-on wavelength of the dichroic mirror in our setup, the 

emission features resulting from excitation wavelengths > 800 nm are not measured. 

Therefore, the maxima for both hexamer and octamer samples are not observable. 

Figure S2: Concentration effects and solvatochromism. a Normalized fluorescence 

emission of highly concentrated samples (≈ 5 µM) of hexamer and octamer in dichloromethane 

(DCM). b Normalized fluorescence emission of diluted samples (≈ 0.5 µM) of hexamer and 

octamer in DCM show an altered ratio of the two largest peaks, as well as a hypsochromic shift 

and peak broadening, compared to more concentrated batches. c Solvent-dependent peak 

shifts in the emission profile of the hexamer-BODIPY in tetrahydrofuran (THF), toluene and 

DCM. d Solvent-dependent peak shifts in the emission profile of the octamer-BODIPY in THF, 

toluene and DCM. 



3 
 

Figure S3: Stand-off NIR images of highly concentrated octamer- (O) and hexamer- (H) 

BODIPYs. NIR fluorescence images of highly concentrated solutions (≈ 5 µM) of octamer and 

hexamer dyes in toluene. Acquisition was performed with our home-built stand-off setup at 

maximum illumination power and at different exposure times: while t = 0.1 s is already 

sufficient to notice the bright fluorescence of the samples, with t = 0.3 s pixel saturation of the 

NIR camera starts becoming observable. Scale bar = 1 cm. 

 

 

Figure S4: NIR images of hexamer-coated lower-size PS beads. NIR fluorescence images 

of higher (a) and lower (b) concentrations of PS beads with diameter ≈ 1.5 μm. These beads 

were tracked in actin networks of different concentrations thanks to their NIR fluorescent 

coating. Scale bar = 10 μm. 
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Figure S5: Coating of the hexamer-BODIPY dye on silica beads and dual-color imaging 

in actin networks. Besides the PS beads, also plain silica beads of diameter ≈ 6 µm were 

successfully coated and embedded into actin filaments, proving the versatility of the NIR dye. 

Different imaging channels (a-c, d-f) are shown: NIR (a,d) for detection of the hexamer-

BODIPY, Vis (b,e) for detection of the actin filaments labelled with a Vis dye, and the merging 

of the channels in false colors (c,f) for co-localization. Scale bar = 10 μm. 
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Figure S6: Single mean squared displacement (MSD) curves for actin degradation 

experiments. Single (colored lines) and mean (red circles) MSD curves resulting from video-

particle tracking (VPT) of PS beads in actin networks after 60 min of continuous illumination. 

PS microspheres coated either with our NIR hexamer-BODIPY (NIR) or with a commercially 

available visible (Vis) dye (fluorescent red PS microspheres, 545/566 nm, FRP5000, Lab 261) 

were employed for this study. The 60 min datasets were normalized to the respective 0 min 

MSD at lag time = 10 s (i.e. in the middle of the plateau region). For the NIR dataset, n = 114 

beads at t = 0 min and 169 beads at t = 60 min. For the Vis dataset, n = 103 beads at t = 0 min 

and 184 beads at t = 60 min. N = 5 independent samples. 
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Figure S7: Storage and loss moduli for actin degradation experiments. Storage (G’) and 

loss (G’’) moduli for both visible (Vis) and near-infrared (NIR) beads tracked in an actin network 

for 60 min under continuous illumination. The shown data corresponds to t = 0 min. 

 

 

 

Table S1: Emission features of hexamer (H) and octamer (O) benzene-fused oligo-

BODIPYs at high concentrations. The first (λem,1) and second (λem,2) emission peaks as well 

as the respective full widths at half maximum (FWHMem,1 and FWHMem,2) of highly concentrated 

(“high”, ≈ 5 µM) dye samples in dichloromethane (DCM) are reported. 

Sample λem,1 (high) /  
nm (cm-1) 

FWHMem,1 (high) / 
nm (cm-1) 

λem,2 (high) /  
nm (cm-1) 

FWHMem,2 (high) / 
nm (cm-1) 

H 963 (10389) 62.6 (408.7) 1080 (9260) 93.0 (828.6) 

O 1002 (9985) 68.2 (637.6) 1108 (9009) 134.7 (1069.9) 

 

 

 

 

Table S2: Emission features of hexamer (H) and octamer (O) benzene-fused oligo-

BODIPYs at low concentrations. The first (λem,1) and second (λem,2) emission peaks as well 

as the respective full widths at half maximum (FWHMem,1 and FWHMem,2) of diluted (“low”, 

≈ 0.5 µM) dye samples in dichloromethane (DCM) are reported. 

Sample λem,1 (low) /  
nm (cm-1) 

FWHMem,1 (low) / 
nm (cm-1) 

λem,2 (low) /  
nm (cm-1) 

FWHMem,2 (low) / 
nm (cm-1) 

H 938 (10667) 49.6 (579.5) 1074 (9315) 98.1 (1177.6) 

O 974 (10264) 56.0 (594.2) 1108 (9022) 125.0 (931.3) 
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Table S3: Solvatochromism of hexamer (H) and octamer (O) benzene-fused oligo-

BODIPYs. The first (λem,1) and second (λem,2) emission peaks of the dyes dissolved in 

tetrahydrofuran (THF), toluene and dichloromethane (DCM) are reported. 

Sample λem,1 (THF) / 
nm (cm-1) 

λem,2 (THF) / 
nm (cm-1) 

λem,1 (toluene) / 
nm (cm-1) 

λem,2 (toluene) / 
nm (cm-1) 

λem,1 (DCM) / 
nm (cm-1) 

λem,2 (DCM) / 
nm (cm-1) 

H 925 (10813) 1054 (9485) 938 (10667) 1074 (9315) 943 (10601) 1075 (9301) 

O 958 (10434) 1097 (9113) 974 (10264) 1115 (9022) 976 (10247) 1115 (8971) 

 


