Electronic Supporting Information

17th January 2022

Polymer Indicator Displacement Assay: Electrochemical Glucose Monitoring Based on Boronic Acid Receptors and Graphene Foam Competitively Binding with Poly-Nordihydroguaiaretic Acid

Simon M. Wikeley ¹, Jakub Przybylowski ¹, Pablo Lozano-Sanchez ², Marco Caffio ², Tony D. James ^{1,3*}, Steven D. Bull ¹, Philip J. Fletcher ⁴, Frank Marken ^{1*}

¹ Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK

² Integrated Graphene Ltd., Euro House, Wellgreen Place, Stirling FK8 2DJ, UK

³ School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.

⁴ University of Bath, Materials & Chemical Characterisation Facility, MC², Bath BA2 7AY, UK

Content

Figure S1		3
Figure S2		4
Figure S3		5
Table S1		5
Table S2	•••••••••••••••••••••••••••••••••••••••	6

Fig. S1. (A) Molecular structure of the pyrene-boronic acid 4-borono-1-(pyren-2-ylmethyl)pyridin-1-ium bromide (T1) with molecular weight 485.7 g mol⁻¹ (for the bromide salt protected by 2,2-dimethyl-propane-1,3-diol). (B,C) Schematic of graphene-immobilised boronic acid reacting with α -D-glucofuranose (the active form of glucose, present in ~0.14 %) or β -D-fructofuranose (the active form of fructose, present in ~25 %).

Fig. S2. (A-C) Electron micrographs for graphene foam electrodes with typically 40 μ m thickness. (D,E) Graphene foam with boronic acid T1 coating (6 μ g on a 4 mm diameter disk). (F,G) Graphene foam with poly-NHG coating (from 50 μ M solution; approx. 1 μ g on a 4 mm diameter disk). (H,I) Graphene foam with both boronic acid and poly-NHG deposits applied sequentially. (J) Raman data with D (1350 cm⁻¹), G (1587 cm⁻¹), and 2D (2701 cm⁻¹) bands indicated.

Fig. S3. Illustration of spontaneous poly-NHG formation by oxygen-driven polymerisation.

Table S1. Peak charges (scan rate 50 mV s⁻¹, for the second potential cycle) for a poly-NHG coated graphene foam electrode (4 mm diameter; 6 μ g T1; 30 min in 0.05 mM NHG to form poly-NHG) immersed in 0.1 M phosphate buffer pH 7 containing different concentrations of glucose.

[glucose]	QP1 _{ox} / µC	$QP2_{ox} / \mu C$	$QP1_{ox}/QP2_{ox}$	$QP1_{red}$ / μC	$QP1_{ox}/QP1_{red}$
1 mM	65.6	90.3	0.73	141	0.46
5 mM	69.9	71.1	0.98	144	0.49
10 mM	67.7	62.4	1.08	131	0.52
25 mM	61.5	44.4	1.39	121	0.51
50 mM	87.9	44.8	1.96	131	0.67
100 mM	77.4	31.1	2.49	118	0.65

Table S2. Peak charges (scan rate 50 mV s⁻¹, for the second potential cycle) for a poly-NHG coated graphene foam electrode (4 mm diameter; 6 μ g T1; 30 min in 0.05 mM NHG to form poly-NHG) immersed in 0.1 M phosphate buffer pH 7 containing different concentrations of fructose.

[fructose]	QP1 _{ox} / µC	Q P2 _{ox} / μC	$QP1_{ox}/QP2_{ox}$	QP1 _{red} / µC	QP1 _{ox} /QP1 _{red}
0.01 mM	87.6	127.3	0.69	186	0.47
0.1 mM	92.7	102.9	0.90	178	0.52
1 mM	111.1	86.4	1.28	172	0.64
5 mM	115.8	55.9	2.07	170	0.68
10 mM	108.6	46.3	2.35	156	0.69
25 mM	118.3	22.3	5.31	132	0.89
50 mM	125.1	28.5	4.39	138	0.91
100 mM	135.0	17.5	7.72	145	0.93