Electronic Supporting Information

High sensitivity and rapid detection of Hepatitis B virus DNA using lateral flow

biosensors based on Au@Pt nanorods in the absence of hydrogen peroxide

Niu Li^a, Xiaoxue Xi^a, Junlun Zhu^a, Xiaowei Wu^{b,*}, Xiuhua Zhang^a, Shengfu Wang^a, Wei Wen^{a,*}

^a Collaborative Innovation Center for Advanced Organic Chemical Materials Coconstructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China

^b Departemnt of Thoracic Surgery, Tongji Hospital, Tongji Medical Collage of Huazhong University of Science and Technology, Wuhan 430030, PR China

*Corresponding Authors:

E-mail: Wei Wen, wenwei@hubu.edu.cn;

Xiaowei Wu, wuxiaowei119@126.com

Fig. S1 The width distribution diagram of the AuNRs (a) and Au@Pt nanorods (b); the length distribution diagram of the AuNRs (c) and Au@Pt nanorods (d).

Fig. S2 Elemental mapping images of Au@Pt nanorods: (a) Au@Pt; (b) Pt; (c) Au.

Fig. S3 The UV-vis absorption spectrum of TMB, OPD and ABTS catalyzed by the Au@Pt nanorods.

Fig. S4 The physical map of lateral flow biosensors for the detection of HBV-DNA.

Fig. S5 Effect of storage conditions on lateral flow biosensors for the detection of HBV-DNA.

Method	Amplification	Linear range	LOD	Reference
Electrochemical	nanoporous gold electrode	0.4 - 10 nM	10 pM	1
Fluorescence signal	Exonuclease III and silver nanoclusters probe	4 - 625 nM	0.97 nM	2
Fluorescence biosensor	hyperbranched rolling circle amplification	0.1 - 40 nM	0.05 nM	3
Lateral flow biosensors	enhanced oxidase-like activity	0.1 - 50 nM	8.5 pM	This work

 Table S1 Comparison of this work with other reported methods

	Intra-assay		Inter-assay			
TargHBV concentration (nM)	Mean ^a	SD ^b	CV ^c (%)	Mean ^a	SD ^b	CV ^c (%)
0.2	1139.01	117.54	10.32	1184.76	117.16	9.86
2	4740.96	262.96	5.55	4665.13	95.73	2.05
20	6058.11	134.15	2.21	6271.04	107.71	1.72

Table S2 Repeatability of multiple experiments in lateral flow biosensors.

(a) Average value of signal intensity on parallel experimental test line (n=3); (b) standard deviation between parallel test experiments (n=3); (c) (the coefficient of variation) CV=SD/mean.

Primer name	Primer sequence (5'to3')		
Probe DNA	AAAAAAAAAATACCACATCATCCAT		
HBV-DNA	TTGGCTTTCAGTTATATGGATGATGTGGT A		
T-DNA	ATAACTGAAAGCCAA		
C-DNA	ATGGATGATGTGGTA		
Non-complementaryDNA1	TGGAT TGCA ACTT ACGA CAAG CCGC TTGTA		
Non-complementaryDNA2	TAATC CGTC AGAT ACCG GAAC CGGA CCGAA		
Non-complementaryDNA3	TATAG CCGA CGGA CGGC CCGA GCAA GCCAT		

 Table S3 The sequences for the nucleic acids used in this work.

Sample number	Spiked Concentration (nM)	Measured Concentration (nM)	Recovery (%)
1	2	1.80	90.00
2	10	10.35	103.50
3	20	17.38	86.90

 Table S4 Reliability of lateral flow biosensors in detecting HBV-DNA in serum samples.

References

- 1. L. E. Ahangar and M. A. Mehrgardi, Bioelectrochemistry, 2017, 117, 83-88.
- 2. Z. C. Liu, L. Zhang, Y. M. Zhang, R. P. liang and J. D. Qiu, Sens. Actuators B Chem, 2014, 205, 219-226.
- 3. X. H. Li, X. L. Zhang, J. Wu, N. Lin, W. M. Sun, M. Chen, Q. S. Ou and Z. Y. Lin, Talanta, 2019, 191, 277-282.