Supplementary material

Fabrication of functional groups-rich monolith for magnetic fieldassisted in-tube solid phase microextraction of inorganic selenium species in water samples followed by online chromatographic determination

Xiaochong Song ^a, Siyu Luo ^a, Jun Liu ^a, Yuanfei Wu ^b, Xiaojia Huang^{*}

^a Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems;

Fujian Key Laboratory of Coastal Pollution Prevention and Control; College of the

Environment and Ecology, Xiamen University, Xiamen 361005, China

^b College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China

Fig. S1. The schematic of the developed online MEC-MFA/IT-SPME-HPLC/DAD system for the analysis of Se(IV) and Se(VI)

Fig. S2. The coordination reaction of Se(IV) with OPA

Fig. S3. Reusability of MEC-MFA/IT-SPME for the extraction of Se(IV)-OPA complex

Fig. S4. SEM image of MEC at low magnification

Fig. S5. TEM image of MEC

Fig. S6. Elemental mapping of C, O, N, S, B and Fe in MEC

Fig. S7. Effect of sample volume on extraction efficiency

Conditions: magnetic field intensities in adsorption and desorption periods were 30 Gs and 50 Gs, respectively; sample flow rate was 0.10 mL/min; volume and flow rate of eluting solvent were 100 μ L and 0.06 mL/min separately; sample pH did not be adjusted; the spiked concentration for Se(IV) was 50.0 μ g/L.

Fig. S8. Effect of sample flow rate on extraction efficiency Conditions: sample volume was 6.0 mL/min; the other conditions were the same as in Fig. S7.

Fig. S9. Effect of volume of eluting solvent on extraction efficiency Conditions: sample flow rate was 0.12 mL/min; the other conditions were the same as in Fig. S8.

Fig. S10. Effect of flow rate of eluting solvent on extraction efficiency Conditions: volume of eluting solvent was 90 μ L; the other conditions were the same as in Fig. S9.

Fig. S11. Effect of solution pH value on extraction efficiency Conditions: flow rate of eluting solvent was 0.04 mL/min; sample pH value was adjusted with 0.1 mol/L HCl and 0.1 mol/L NaOH; the other conditions were the same as in Fig. S10.

MEC	Monomers (%, w/w)		Cross-linkers (%, w/w)		Monomer mixture (%, w/w)		Polymerization mixture (%, w/w)		- Dools area a	Pressure ^b
	1	70	30	50	50	40	60	30	70	1041
2	60	40	50	50	40	60	30	70	1053	1.8
3	50	50	50	50	40	60	30	70	1067	2.0
4	40	60	50	50	40	60	30	70	1065	6.7
5	50	50	70	30	40	60	30	70	1100	1.5
6	50	50	60	40	40	60	30	70	1095	1.8
7	50	50	40	60	40	60	30	70	1067	2.0
8	50	50	30	70	40	60	30	70	/	∞ c
9	50	50	70	30	50	50	30	70	1042	5.0
10	50	50	70	30	45	55	30	70	1100	3.7
11	50	50	70	30	35	65	30	70	1097	1.6
12	50	50	70	30	40	60	25	75	1041	1.2
13	50	50	60	40	40	60	35	65	/	∞
14	50	50	60	40	40	60	40	60	/	∞

Table S1. Extraction performance of different MECs towards Se(IV)-OPA complex

^a Ultrapure water was used as sample matrices, and the spiked concentration was 200 µg/L.

^b Methanol passed through the capillary microextraction column with 0.10 mL/min flow rate.

^c Under this ratio, the column pressure was too high and methanol solution could not pass through the MEC.

Interferingions		TCD	Concentrations of		
Interfering folis	Added as	ICKS	coexisting ion (μ g/L)		
K^+	KC1	1000	50000		
Ca ²⁺	CaCl ₂	1000	50000		
Na^+	NaCl	1000	50000		
Mg^{2+}	MgSO ₄	1000	50000		
Hg^{2+}	Hg(NO ₃) ₂	100	5000		
Zn^{2+}	$Zn(NO_3)_2$	100	5000		
Mn^{2+}	MnSO ₄ ·H ₂ O	100	5000		
Co ²⁺	$Co(NO_3)_2$	100	5000		
Ni ²⁺	NiSO ₄	100	5000		
Sn^{4+}	SnCl ₄	100	5000		
Pb^{2+}	$Pb(NO_3)_2$	20	1000		
Cd^{2+}	$CdSO_4$	20	1000		
Cu^{2+}	$Cu(NO_3)_2$	20	1000		

Table S2. The TCRs of coexisting ions

Concentration for Se(IV) was 50 μ g/L.

Mathada	Sample	Elvertwelvere	Linear ranges	LODs	Extraction	Extraction	Ref.	
Wiethous	volume (mL)	Eluent volume	(µg/L)	$(\mu g/L)$	efficiency (%)	time (min)		
UALPME-ETAAS	25	0.5 mL choline chloride-phenol	0.2-8	0.0046	100	13	12	
DLLME-ETAAS	15	0.5 mL THF-0.05 mL chloroform	10-50	0.97	100	23	15	
MSPE-ETAAS	250	1.1 mL 0.64 mol/L HCl	0.03-10	0.01	96.8	25.5	30	
D-µ-SPE-ETAAS	10	0.6 mL ethyl acetate	0.0047-3.8	0.0014	90	30.2	27	
SPME-HGAAS	42	4.5 mL 0.1 M NaCl	0.012-200	0.004	75	20	31	
SPE-HGAFS	1.0	0.1 mL NaOH (1.0%, m/v)	0.05-2.5	0.009	97	2.2	17	
SPE-LEP/OES	500	0.6 mL 1.5 mol/L KOH	7.8-78	2.5	98.3	110	32	
HF-LPME-HPLC/UV	22	0.025 mL MeOH	0.05-200	0.02	22.2	36.2	13	
DLLME-UV/Vis	5.0	0.7 mL deep eutectic solvents	2.0-100	0.76	/a	5.5	28	
DLLME-UV/Vis	5.6	0.15 mL 1-undecanol	20-300	3.4	/	12	33	
CPE-UV/Vis	10	1.0 mL MeOH	5.0-400	9	/	65	16	
PVG ^b -UV/Vis	10	/	10-400	7	/	48.3	34	
MFA/IT-SPME- HPLC/DAD	6.0	0.09 mL MeOH	0.05-200	0.012	97	52	Current study	

 Table S3. Comparison with other methods for the determination of selenium species in water samples

^a Relevant values did not been given in the article;

^b photochemical vapor generation.

Suppliers of chemicals and materials used in the study

1-Allyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)imide (MAT) (\geq 99%) was supplied by Shanghai Dibai Chemical Technology Co., Ltd. (Shanghai, China). (3-Acrylamidophenyl)boronic acid (ABA), divinylbenzene (DVB) (80%) and *o*-phenylenediamine (OPA) were obtained from Macklin Biochemical Co. (Shanghai, China). Ethylene dimethacrylate (EDMA) (97%) was bought from Alfa Aesar Biochemical Co. (Tianjin, China). n-Propyl alcohol (\geq 99.5%), 1,4-butanediol and azobisisobutyronitrile (AIBN, 97%) were got from Xilong Chemical Co. (Guangzhou, China). HPLC-grade acetonitrile (ACN) and methanol were purchased from Thermo Fisher Sci. (Shanghai, China). Water used throughout the study was purified using a Milli-Q water purification system (Millipore, USA). The fused silica capillary (320 µm i.d.) was bought from Ruifeng Instrumental Co. (Hebei, China).

Detailed information about characterization instruments

The morphology and size of MEC were characterized by SEM (IEISS SUPRA 55, German) and TEM (JEOL 2011 microscope, Japan). The FI-IR (Shimadzu, Japan) and PPMS-9 VSM (QUANTOM, USA) were used to analyze the chemical structure and magnetic properties of prepared MEC. The contents of C, H, N and S in MEC were measured by elemental analysis (EA) (PerkinElmer-Model PE 2400, USA). Elemental mapping was conducted on OXFORD X-MaxN EDS system (Oxford, England). BET analysis was carried out on micromeritics ASAP 2020-physisorption analyzer (Micromeritics Instrument Corporation, Shanghai, China).

The relationship of intensity of magnetic field with current

The intensity of magnetic field (B) is calculated as follows:

B=µ0nI

 μ_0 : permeability of vacuum, the value is $4\pi \times 10^{-7}$ N·A⁻²;

n: coil number in per unit length, m⁻¹, the value is 5000 m⁻¹ at present study;

I: current, A;

The unit of B is Tesla (T), $1T=1 \text{ N} \cdot \text{A}^{-1} \text{ m}^{-1}=10^4 \text{ Gs}$

For example, if we want to apply a magnetic field with the intensity of 30 Gs, the needed current is calculated as follows:

$$30 \times 10^{-4} \text{ N} \cdot \text{A}^{-1} \text{ m}^{-1} = 4\pi \times 10^{-7} \text{ N} \cdot \text{A}^{-2} \times 5000 \text{ m}^{-1} \times \text{I}$$

I=0.48 A

Reference:

[1] Edit by J.J. Mao, M. Gu, *Phycics for University (Volume One)*, Higher education press, Beijing, 2006.1