Supporting Information

Label-free and enzyme-free plasmon-enhanced single molecule fluorescence detection of HIV DNA fragment based on catalytic hairpin assembly

Ke Shi, Na Na, Jin Ouyang*

Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875 (P. R. China)

*Corresponding author: Tel: +86-10-58805373; Fax: +86-10-62799838 E-mail: jinoyang@bnu.edu.cn

Results and Discussion

Fig. S1 (A) UV-vis spectra of solutions containing unmodified Au TNP (black) and Au TNP-DNA (red). (B) Dynamic light scattering (DLS) characterization of the unmodified Au TNPs (orange) and Au TNP-DNA (green).

Note	Sequence
Target DNA	5'-ACT GCT AGA GAT TTT CCA CAT-3'
HP1	5'-AT GTG GAA AAT CTC TAG CAG TTT TCG ACA
	TCT GGC ATG CAT TTG TAC TGGGC AGGGC TGG
	GC TAGGG AT-3'
HP2	5'-GTA CAA ATG CAT GCC AGA TGT CGA AAA C
	TGCTA GAG ATT TTC CAC AT-3'
1MT	5'-ACT GCT AGA GCT TTT CCA CAT-3'
2MT	5'-ACT GAT AGA GAT TTT CGA CAT-3'
3MT	5'-ACA GCT AGA GCT TTT CCA TAT-3'
NCT	5'-TAG CAT CGC TAC GGA TCT ACC-3'
HP1-12nt	5'-AT GTG GAA AAT TGGGC AGGGC TGGGC TAG
	GG AT-3'
HP1-24nt	5'-AT GTG GAA AAT CTC TAG CAG TTT TGGGC A
	GGGC TGGGC TAGGG AT-3'
HP1-36nt	5'-AT GTG GAA AAT CTC TAG CAG TTT TCG ACA
	TCT GGC TGGGC AGGGC TGGGC TAGGG AT-3'
HP1-48nt	5'-AT GTG GAA AAT CTC TAG CAG TTT TCG ACA
	TCT GGC ATG CAT TTG TAC TGGGC AGGGC TGG
	GC TAGGG AT-3'
HP1-60nt	5'-AT GTG GAA AAT CTC TAG CAG TTT TCG ACA
	TCT GGC ATG CAT TTG TAC CAT CGC TAC GGA
	TGGGC AGGGC TGGGC TAGGG AT-3'

Table S1. Sequences of the oligonucleotides used in this work

Fig. S2 A typical two-step photobleaching behavior of fluorescence time traces of the NMM@G-quadruplex attached to the Au TNP.

Fig. S3 Fluorescence intensity histograms of (A)NMM, (B) G-quadruplex@NMM, (C)Au TNP@G-quadruplex@NMM.

Fig. S4 The electric fields of Au TNP were simulated with FDTD model.

Figure S5. (A) Fluorescence spectrum and (B) Histogram of fluorescence intensity change of one-base mutation and completely non-complementary target.

Figure S6. Representative single-molecule fluorescence image of one-base mutation target (A)1MT-1 (B) 1MT-2 and completely non-complementary target (C) NCT-1 (D) NCT-2. Scale bar = $5 \mu m$.

Figure S7. Verification of the feasibility of this strategy for microRNA-21 detection and specificity investigation for microRNA-21 against microRNA-141, mcroRNA-155, let-7a.

Figure S8. Representative single-molecule fluorescence image of target in HeLa and A549 cell lysates.

Detection strategy	Methods	Linear range	Detection	Ref
			limit	
G-quadruplex-based	Fluorescence	0.1 nM-50.0 nM	13 pM	1
fluorescence strategy				
CRISPR-based ECL	Electrochemil	100 fM-1 μM	30 fM	2
biosensor	uminescence			
fluorescent lateral flow	Fluorescence	1 pM-10 nM	11 pM	3
assay strips				
DNA-stabilized AgNCs-	Fluorescence	0.2-700 nM	33 pM	4
based probe				
DNA nanomachine on gold	Fluorescence	5 fM-1.67 pM	1.46 fM	5
nanoparticles (AuNPs)				
Exo I Hydrolysis-Assisted	Electrochemi	0.1 pM-10 nM	150 fM	6
hpDNA Biosensors	stry			
Multiple Amplified ECL	Electrochemil	0.05 pM-50 nM	39.81 fM	7
Biosensor	uminescence			
upconversion luminescence	luminescence	0.02-30 nM	10.2 pM	8
nanoprobe				
G-quadruplex-based Au	Single-	0-1000 fM	0.83 fM	This
TNP enhanced fluorescence	molecule			work
strategy	fluorescence			

Table S2. Comparison of HIV DNA detection between this work and other strategy

References:

1. Zhang, F.; Xiang, L.; Xiao, X.; Chen, X.; Chen, C.; Cai, C. Analyst 2020, 145 (1), 206-212.

2. Zhao, K.; Wang, L.; Liu, P.; Hang, X.; Wang, H.; Ye, S.; Liu, Z.; Liang, G. Sensors and Actuators B: Chemical 2021, 346, 130485.

3. Deng, X.; Wang, C.; Gao, Y.; Li, J.; Wen, W.; Zhang, X.; Wang, S. Biosensors and Bioelectronics 2018, 105, 211-217.

4. Zou, R.; Zhang, F.; Chen, C.; Cai, C. Sensors and Actuators B: Chemical 2019, 296, 126608.

5. Zheng, J.; Ji, X.; Du, M.; Tian, S.; He, Z. Nanoscale 2018, 10 (36), 17206-17211.

6. Gao, X.; Wang, X.; Li, Y.; He, J.; Yu, H. Analytical Chemistry 2018, 90 (13), 8147-8153.

7. Wu, Z.; Luo, F.; Wen, W.; Zhang, X.; Wang, S. Analytical Chemistry 2019, 91 (19), 12238-12245.

8. Tang, W.; Mi, R.; Wang, L.; Chen, H. Sensors and Actuators B: Chemical 2021, 340, 129969.

Names	Sequences (5' to 3')
SH-HP1	ATGTGGAACATCCTGCCCATAGACTTCAACATCAGTCTGAT
	AAGCTATGGGCAGGGCTGGGCTAGGGAT
HP2	ATAGACTTCAACAATAGCTTATCAGACTGATGTTGAAGTCT
	ATGGGAGG
miRNA-141	UAACACUGUCUGGUAAAGAUGG
miRNA-155	UUAAUGCUAAUCGUGAUAGGGGU
miR-21	UAGCUUAUCAGACUGAUGUUGA
let-7a	UGAGGUAGUAGGUUGUAUAGUU

Table S3. DNA and miRNA sequences used in the additional experiments

 Table S4. One-base mutation and non-complementary target sequences used in the additional experiments.

Sequences (5' to 3')
ACTGCTAGAGCTTTTCCACAT
ACTGCTAGAGATTTTCGACAT
TAGCATCGCTACGGATCTACC
ACAGGGATGAGCTTTCGACAT

Table S5. Relative standard deviation of this detection strategy.

Target concentration	Average fluorescence intensity change	RSD%(n=5)
1 pM	15033.63	5.35
10 pM	29745.13	3.70
100 pM	45921.47	4.91
1 nM	70422.53	5.64
10 nM	90628.90	4.25