Supporting Information

Highly Flexible Ni-Co MOF Nanosheets Coated Au/PDMS Film based Wearable Electrochemical Sensor for Continuous Human Sweat Glucose Monitoring

Yun Shu,^{a,*} Zhenjiao Shang,^a Tong Su,^a Shenghao Zhang,^a Qin Lu,^a Qin Xu,^a Xiaoya Hu^{a,*}

^aSchool of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R.China

*Corresponding author. Email: shuyun@yzu.edu.cn, xyhu@yzu.edu.cn

Figure S1. (A-E) TEM images of MOF products synthesized under different ratios of nickel and cobalt. (F) XPS spectra of the Ni-Co MOF nanocomposite. Corresponding spectra of Ni (G) and Co (H).

Figure S2. (A) The electrochemical impedance spectroscopy of Au/PDMS and NCAP film electrode conducted at open circuit voltage in the frequency range of 100 kHZ to 0.01 Hz in potassium ferricyanide solution containing 1 M KCl and 2.5 mM $K_3[Fe(CN)_6]$ and $K_4[Fe(CN)_6]$. (B) CV study of of Au/PDMS and NCAP film electrode in potassium ferricyanide solution containing 1 M KCl and 2.5 mM $K_3[Fe(CN)_6]$. Scan rate: 100 mV/s.

Figure S3. CV curves of flexible of Au/PDMS film electrode modified with MOF products synthesized under different ratios of nickel and cobalt in N_2 saturated 0.1 M NaOH without glucose (A) and in presence of 0.5 mM glucose (B).

Figure S4. (A) CV curves of NCAP film electrode in 0.1 M NaOH at different scan rates (10–100 mV·s⁻¹). Inset: the calibration curves of oxidation and reduction peak currents with the scan rate. (B) CV curves of NCAP film electrode in presence of 1 mM glucose at different scan rates (10–100 mV·s⁻¹). Inset shows the corresponding calibration plots of oxidation and reduction peak currents with the square root of scan rates.

Figure S5. CV curves of the flexible sensor after cyclic stretching from 0 time to 400 times in potassium ferricyanide solution.

Figure S6. Influence of Ni-Co MOF with different concentrations on the response of NCAP film electrode in 0.1 M NaOH solution with 0.5 mM glucose.

Figure S7. Amperometric study of NCAP film electrode in the presence of glucose at different potentials.

Figure S8. Variation of the current response to 1 mM glucose for NCAP film electrode versus storage time.

Figure S9. (A) Amperometric curve of NCAP film electrode to a serial of glucose concentration in PBS. (B) The corresponding calibration plots of current versus glucose concentration.

Figure S10. Amperometric curves of the NCAP film electrode at various glucose concentrations at temperatures of 22, 30, and 38 °C.

Figure S11. Comparison of sweat detection before and after meal.

Electrodes	Sensitivity	Limit of	Linear	Ref.
	$(\mu A \cdot mM^{-1} \cdot cm^{-2})$	Dection	range	
		(µM)	(mM)	
CoWO ₄ /CNT on CNT/Au	10.89	1.3	0.05-0.3	1
nanosheet patch				
Au/PB/GOx/Ch fiber	11.7	6	0-0.5	2
GOx/Ch/Nafion on Pt-graphite	105	10	0-0.9	3
patch				
Cu on CNT fiber	46	50	0.05-5	4
rGO/PU-Au nanohybrid	140	~	0.001-1.0	5
wrinkled fiber				
Nanoporous gold (NPG) electrode	57.56	~	0.1-1.0	6
Processed wrinkled gold electrodes	750-810	~	1-10	7
GOx/PB/graphene/	1	10	0.01-0.7	8
gold mesh				
GOx/chitosan/PB/	2.35	~	~	9
CNT/gold				
GOx/chitosan/PB	23	3	0-0.1	10
NCAP film electrode	205.1	4.25	0.02-0.79	This
				work

 Table S1. Comparison of different nanocomposite based stretchable electrochemical sensors

 for detection of Glucose

References

- 1. S. Y. Oh, S. Y. Hong, Y. R. Jeong, J. Yun, H. Park, S. W. Jin, G. Lee, J. H. Oh, H. Lee, S.-S. Lee and J. S. Ha, *Acs Applied Materials & Interfaces*, 2018, **10**, 13729-13740.
- Y. Zhao, Q. Zhai, D. Dong, T. An, S. Gong, Q. Shi and W. Cheng, *Analytical Chemistry*, 2019, 91, 6569-6576.
- 3. A. Abellan-Llobregat, I. Jeerapan, A. Bandodkar, L. Vidal, A. Canals, J. Wang and E. Morallon, *Biosensors & Bioelectronics*, 2017, **91**, 885-891.
- D. Jiang, Z. Liu, K. Wu, L. Mou, R. Ovalle-Robles, K. Inoue, Y. Zhang, N. Yuan, J. Ding, J. Qiu, Y. Huang and Z. Liu, *Polymers*, 2018, 10.
- 5. T. Phan Tan, T. Tran Quang, D. Thi My Linh, C. W. Bae and N.-E. Lee, *Acs Applied Materials & Interfaces*, 2019, **11**, 10707-10717.
- C. W. Bae, T. Phan Tan, B. Y. Kim, W. I. Lee, H. B. Lee, A. Hanif, E. H. Lee and N.-E. Lee, Acs Applied Materials & Interfaces, 2019, 11, 14567-14575.
- Y. Chan, M. Skreta, H. McPhee, S. Saha, R. Deus and L. Soleymani, *Analyst*, 2019, 144, 1850-1850.
- 8. H. Lee, T. K. Choi, Y. B. Lee, H. R. Cho, R. Ghaffari, L. Wang, H. J. Choi, T. D. Chung, N. S.

Lu, T. Hyeon, S. H. Choi and D. H. Kim, Nature Nanotechnology, 2016, 11, 566-572.

- W. Gao, S. Emaminejad, H. Y. Y. Nyein, S. Challa, K. Chen, A. Peck, H. M. Fahad, H. Ota, H. Shiraki, D. Kiriya, D.-H. Lien, G. A. Brooks, R. W. Davis and A. Javey, *Nature*, 2016, 529, 509-514.
- 10. A. J. Bandodkar, W. Jia, C. Yardimci, X. Wang, J. Ramirez and J. Wang, *Analytical Chemistry*, 2015, **87**, 394-398.