Electronic supplementary information (ESI)

Nanoclay-based sensor composite for facile detection

of molecular antioxidants

Adél Szerlauth,^{ab} Lilla Szalma,^b Szabolcs Muráth,^{ab} Szilárd Sáringer,^{ab} Gábor Varga,^a Li Li,^c and István Szilágyi^{*ab}

^aMTA-SZTE Lendület Biocolloids Research Group, University of Szeged, H-6720 Szeged, Hungary ^bDepartment of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary ^cAustralian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, OLD-4072, Australia

*Corresponding author: szistvan@chem.u-szeged.hu (IS)

Scheme S1. Generic reaction scheme between $Cu(Nc)_2$ and antioxidants.

Fig. S1 The size and morphology of dLDH nanosheets: the particle size distribution (A)

and the TEM image (B).

Fig. S2 Hydrodynamic radius versus time at different NaAlg doses and constant dLDH concentrations at 1 mM ionic strength and pH 9.

Fig. S3 Concentration dependent absorbance values measured with different antioxidants.

Fig. S4 SEM image of the paper (A) and P-Cu(Nc)₂ (B).

Fig. S5 Photos of paper-based sensors after the measurements of the ascorbic acid contents

with $P-Cu(Nc)_2$ (a) and $P-dLDH-Alg-Cu(Nc)_2$ (b).

Fig. S6 Calibration curves for different antioxidants. The equations of the fitted lines and the confidence intervals are shown on the graphs. P-Cu(Nc)₂:paper/complex and P-dLDH-Alg-Cu(Nc)₂: paper/sensor.

Fig. S7 Experimental ∆MBV data fitted with Hill equations (dotted lines) for the different antioxidants. P-Cu(Nc)₂:paper/complex and P-dLDH-Alg-Cu(Nc)₂: paper/sensor.

Raman shift (cm ⁻¹)	Assignment	Sample
1095	ν (COC), ν (CH)	paper, P-dLDH
1309	δ (HCO), δ (HCC)	paper, P-dLDH, P-Cu(Nc) ₂ ,
		P-dLDH-Alg-Cu(Nc) ₂
1404 and ~ 1580	v (C=C) [aromatic ring]	$Cu(Nc)_2$, P- $Cu(Nc)_2$, P-
		dLDH-Alg-Cu(Nc) ₂
1609	β (OH)	P-dLDH
~ 2900	ν (CH), ν (CH ₂)	paper, P-dLDH, P-Cu(Nc) ₂ ,
		P-dLDH-Alg-Cu(Nc) ₂

Table S1 Identified Raman bands and their assignments. (v: stretching vibration, δ : bending vibration and β : (special) bending mode vibration of water).

Antioxidant	Structure	TEAC P-Cu(N¢)2	TEAC P-dLDH-Alg-Cu(Nc) ₂	LOD P-Cu(Nc)2 [µM]	LOD P-dLDH-Alg-Cu(Nc) [µM]	Linear range P-Cu(Nc) ₂ [µM]	Linear range P-dLDH-Alg-Cu(Nc) [µM]
Trolox	НО СООН	1	1	42	39	45-100	40-100
Ascorbic acid		0.97	1.25	72	48	80-100	60-100
Eugenol	HO H ₃ CO	1.04	0.90	65	59	80-100	65-100

Table S2 The structure, TEAC, LOD and linear range of investigated antioxidants.

Sodium	COONa						
salicylate	ОН	-	-	-	-	-	-

Method	Antioxidants	Properties	Reference
Colorimetric assay based on etching of gold nanorods	Ascorbic acid, tannic acid, ferulic acid	Linear range: 0.4-116.7 μM LOD: 0.3-2.3 μM	1
Nafion membrane modified by ferric- <i>o</i> - phenantroline	Caffeic acid, ferulic acid, catechin, gallic acid, quercetin, rutin, rosmarinic acid, ascorbic acid, uric acid, α-tocopherol, bilirubin, glutathione, cysteine, homocysteine	Linear range: 0.46-104.8 μM LOD (for trolox): 0.26 μM	2
Paper based CuPRAC assay	Gallic acid, vanillic acid, ascorbic acid, caffeic acid	Linear range: 0.5-70 mM LOD: 0.5-1.2 mM	3
CuPRAC based electrochemical sensor	Trolox, ascorbic acid, gallic acid	Linear range: 62-770 μM LOD (for trolox): 62.9 μM	4
Paper and 3D printed antioxidant sensor based on CeO ₂ nanoparticles	Vanillic acid, ascorbic acid, trolox, quercetin, ellagic acid, ferulic acid	Linear range: 2-500 μM LOD: 9-32 μM	5

 Table S3 Comparison of antioxidant detection methods

	Trolox, ascorbic acid, eugenol,		
		Linear range:	
	diosmin, gallic acid,		
Functionalized paper		3-300 µM	
	glutathione, catechin, tannic		This work
by dLDH particles	-	LOD:	
•	acid, chlorogenic acid, sodium		
	-	1-146 µM	
	salycilate	•	

References

- F. Y. Tian, R. J. Fu, J. Zhou, Y. L. Cui, Y. H. Zhang, B. N. Jiao and Y. He, Sens. Actuator B-Chem., 2020, 321, 128604.
- 2 M. Bener and R. Apak, Sens. Actuator B-Chem., 2017, 247, 155-162.
- 3 C. Puangbanlang, K. Sirivibulkovit, D. Nacapricha and Y. Sameenoi, *Talanta*, 2019, 198, 542-549.
- 4 A. Cardenas and C. Frontana, *Sens. Actuator B-Chem.*, 2020, **313**, 128070.
- 5 A. Othman, L. Norton, A. S. Finny and S. Andreescu, *Talanta*, 2020, **208**, 120473.