Supplementary information

Electrochemical sensor based on the Mn₃O₄/CeO₂ nanocomposite with abundant oxygen vacancies for highly sensitive detection of hydrogen peroxide released from living cells

Yalin Wu¹, Liping Lu^{1*}, Zhihui Yu¹, Xiayan Wang^{2*}

¹Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China; ²Center of Excellence for Environmental Safety and Biological Effects,

Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China

Fig. S1. The (A-C) HR-TEM images and (D) EDS of the Mn_3O_4/CeO_2 nanocomposites.

Fig. S2. XRD pattern of the CeO_2 and Mn_3O_4/CeO_2 .

Fig. S3. (A) The current response of five different $Mn_3O_4/CeO_2/GCE$ prepared under the same conditions in 0.1 M PBS (pH = 7.4) containing 1 mM H₂O₂. (B) The current response of 10 repeated amperometric measurements using the same $Mn_3O_4/CeO_2/GCE$ in 0.1 M PBS (pH = 7.4) containing 1 mM H₂O₂. (C) Stability test of Mn_3O_4/CeO_2 modified electrode.