Supporting Information

A bifunctional fluorescent probe for sensing of Al³⁺ and H₂S

Ziao Zong, Jing Wang, Yidong Bin, Yanliu Wu, Guimei Huang*

School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, 533000 Guangxi, China

Fig. S1. ¹H NMR (DMSO- d_6 , 600 MHz) spectrum of L.

Fig. S2. ESI-MS spectrum of L.

Fig. S3. The dihedral angle of L

Fig. S4. Competition experiment of L toward Al^{3+} in the presence of 5 equiv. of other metal ions in MeOH/H₂O (9/1, v/v, pH=7.4).

Fig. S5. Fluorescence intensity at 477 nm of L (10 μ M) at various pH values in MeOH/H₂O (9/1, v/v) medium in the absence and presence of Al³⁺ (5 equiv).

Fig. S6. ¹H NMR (DMSO- d_6 , 600 MHz) spectra of L with Al³⁺.

Fig. S7. Job's plot of L-Al³⁺ system in Me/H₂O (9/1, V/V, pH=7.4) medium.

Fig. S8. Benesi-Hildebrand plot of L-Al³⁺ system in MeOH/H₂O (9/1, v/v, pH=7.4) medium.

Fig. S9. Competition experiment of L toward H_2S in the presence of 5 equiv. of other anions in EtOH/H₂O (7/3, v/v, pH=7.4).

Fig. S10. Fluorescence intensity at 495 nm of L (10 μ M) at various pH values in EtOH/H₂O (9/1, v/v) medium in the absence and presence of H₂S (5 equiv).

Fig. S11. ¹H NMR (DMSO- d_6 , 600 MHz) spectra of L with H₂S.

Fig. S12. Job's plot of L-H₂S system in EtOH/H₂O (7/3, V/V, pH=7.4) medium.

Fig. S13. Benesi-Hildebrand plot of L-H₂S system in EtOH/H₂O (7/3, v/v, pH=7.4) medium.

Table S1 Summary of crystal data and structure refinement parameters for L

Table S2 Selected bond lengths (Å) and angles (°) for L.

Table S3 Determination of Al³⁺ in water samples from different water sources by

standard-addition method (n =3).

Table S4 Determination of H_2S in water samples from different water sources by standard-addition method (n = 3).

Fig. S1. ¹H NMR (DMSO- d_6 , 600 MHz) spectrum of L.

Fig. S2. The ESI-MS spectrum of compound L.

Fig. S3. The dihedral angle of L.

Fig. S4. Competition experiment of L toward Al^{3+} in the presence of 5 equiv. of other metal ions in MeOH/H₂O (9/1, v/v, pH=7.4), $\lambda ex = 380$ nm.

Fig. S5. Fluorescence intensity at 477 nm of L (10 μ M) at various pH values in MeOH/H₂O (9/1, v/v) medium in the absence and presence of Al³⁺ (5 equiv).

Fig. S6. ¹H NMR (DMSO- d_6 , 600 MHz) spectra of L with Al³⁺.

Fig. S7. Job's plot of L-Al³⁺ system in MeOH/H₂O (9/1, V/V, pH=7.4) medium.

Fig. S8. Benesi-Hildebrand plot of L-Al³⁺ system in MeOH/H₂O (9/1, v/v, pH=7.4) medium.

Fig. S9. Competition experiment of L toward H_2S in the presence of 5 equiv. of other anions in EtOH/ H_2O (7/3, v/v, pH=7.4).

Fig. S10. Fluorescence intensity at 495 nm of L (10 μ M) at various pH values in EtOH/H₂O (7/3, v/v) medium in the absence and presence of H₂S (5 equiv).

Fig. S12. Job's plot of L-H₂S system in EtOH/H₂O (7/3, V/V, pH=7.4) medium.

Fig. S13. Benesi-Hildebrand plot of L-H₂S system in EtOH/H₂O (7/3, v/v, pH=7.4) medium.

	Crystal data
Empirical formula	$C_{14}H_{12}N_2O_2$
Formula weight	240.26
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	5.0646 (4), 5.1677 (5), 43.549 (4)
β (°)	92.595 (4)
$V(Å^3)$	1138.61 (18)
Ζ	4
Radiation type	Μο Κα
μ (mm ⁻¹)	0.096
Crystal size (mm)	$0.19 \times 0.15 \times 0.12$
$\Delta \rho_{max}, \Delta \rho_{min} (e \text{ Å}^{-3})$	0.29, -0.27

Table S1 Summary of crystal data and structure refinement parameters for L

Table S2 Selected bond lengths (Å) and angles (°) for L.

Bond lengths (Å)		bond angles (°)		
O1—C14	1.2462 (18)	C7—N1—C8	121.93 (14)	
O2—C1	1.346 (2)	O2—C1—C2	119.40 (15)	
N1—C7	1.278 (2)	C2—C1—C6	119.51 (15)	
N2—C14	1.3338 (19)	C5—C6—C1	118.23 (15)	
C1—C2	1.393 (2)	C5—C6—C7	120.40 (15)	
C1—C6	1.397 (2)	N1—C7—C6	121.90 (15)	
C5—C6	1.397 (2)	С10—С9—С8	120.84 (15)	
C8—C9	1.388 (2)	C9—C10—C11	120.24 (15)	
C10—C11	1.392 (2)	O1—C14—N2	122.34 (12)	
C11—C12	1.390 (2)	N2—C14—C11	117.30 (13)	

Water samples	Amount of	Total Al ³⁺	Recovery of	RSD	Relative
studied	standard Al ³⁺	found	Al ³⁺ (n=3)	(%)	error
_	added (µM)	(n=3) (µM)	added (%)		(%)
Tap water	3.0	3.02	100.67	1.20	1.75
	3.5	3.48	99.43	0.65	-1.18
	4.0	4.03	100.75	2.57	0.86
	4.5	4.48	99.56	1.36	-1.62
	5.0	4.97	99.40	1.56	-2.16
	5.5	5.56	101.09	0.78	0.69
Lake water	3.0	3.01	100.33	1.72	1.06
	3.5	3.53	100.86	2.00	3.18
	4.0	3.95	98.75	1.56	-0.59
	4.5	4.54	100.89	1.25	1.76
	5.0	4.89	97.80	0.26	-2.35
	5.5	5.60	101.82	0.38	2.16

Table S3 Determination of Al^{3+} in water samples from different water sources by standard-
addition method (n =3).

Water samples studied	Amount of standard H_2S	Total H ₂ S found	Recovery of H ₂ S (n=3)	RSD (%)	Relative error
	added (µM)	(n=3) (µM)	added (%)		(%)
Tap water	6.0	5.96	103.80	2.20	2.75
	6.5	6.48	95.70	0.50	-2.18
	7.0	6.95	102.87	3.57	0.63
	7.5	7.42	98.90	1.50	-1.82
	8.0	7.91	97.36	2.56	-3.12
	8.5	8.53	97.17	0.30	-0.78
Lake water	6.0	6.04	101.80	1.60	2.07
	6.5	6.51	103.30	3.00	3.28
	7.0	6.92	95.67	1.16	-2.59
	7.5	7.52	104.35	3.75	1.62
	8.0	8.05	102.60	0.16	2.68
	8.5	8.46	95.60	0.29	-2.66

Table S4 Determination of H_2S in water samples from different water sources by standard-
addition method (n =3).