Supporting Information

3D-printing for forensic chemistry: Voltammetric determination of cocaine on additively manufactured graphene-polylactic acid electrodes

Raquel G. Rocha,^{a+} Julia S. Ribeiro,^{a+} Mário H. P. Santana,^b Eduardo M. Richter,^a

Rodrigo A. A. Muñoz ^{a *}

^a Institute of Chemistry, Federal University of Uberlândia, 38408-100 Uberlândia, MG, Brazil
^b Unidade Técnico-Científica, Superintendência Regional da Polícia Federal em MG, 38408-680,
Uberlândia, Minas Gerais, Brazil

⁺RGR and JSR contributed equally in this work.

*e-mail: munoz@ufu.br

Figure S1. Cyclic voltammograms obtained for 1 mmol L⁻¹ cocaine in 0.1 mol L⁻¹ phosphate buffer (pH = 7.0), using electrochemically treated G-PLA electrode (blue line) and electrochemically C-PLA electrode (blue line) and respective blank signals (dashed lines). The G-PLA electrode was treated applying +1.76 V (*vs.* Ag|AgCl|KCl_{sat.}) for 900 s and -1.76 V (*vs.* Ag|AgCl|KCl_{sat.}) for 50 s in 0.1 mol L⁻¹ phosphate buffer (pH = 7.4). The C-PLA electrode was electrochemically treated applying +1.4 V (*vs.* Ag|AgCl|KCl_{sat.}) for 200 s followed by -1.0 V (*vs.* Ag|AgCl|KCl_{sat.}) for 200 s in 0.5 mol L⁻¹ NaOH. Scan rate: 50 mV s⁻¹; Step potential: 5 mV.

Figure S2. Relation between current peak (*I*) of 100 µmol L⁻¹ cocaine (n=3) and (**A**) frequency (*f*), (**B**) amplitude (*a*) and (**C**) step potential (ΔE_s). SWV parameters kept constant were: $\Delta E_s = 5$ mV and f = 60 s⁻¹ and a = 60 mV.

Table S1. Peak current, potential response of cocaine in the presence of interfering species, using the data of Figure 3.

Interfering species	Peak current / µA	Peak potential / V	Recovery / %
COC	0.65	1.11	100
PAR	0.41	1.13	64
CAF	0.63	1.11	97
PRO	0.61	1.12	94
РНЕ	0.35	1.09	54
LID	0.31	1.09	47
BEN	0.42	1.09	65
LEV	0.22	1.11	34