Supplemental Information for Inductively Coupled Plasma Optical Emission Spectroscopy as a Tool for Evaluating Lateral Flow Assays

Jenna M. DeSousa^{a,1}, Micaella Z. Jorge^{a,1}, Hayley B. Lindsay^{b,c}, Frederick R. Haselton^{a,b}, David W. Wright^{a*}, Thomas F. Scherr^{a*}

¹these authors contributed equally

*author to whom correspondence should be directed (<u>thomas.f.scherr@vanderbilt.edu</u>) *author to whom correspondence should be directed (<u>david.w.wright@vanderbilt.edu</u>)

Affiliations:

^a Department of Chemistry, Vanderbilt University, Nashville, TN, USA

^b Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA

^c Present address: Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA

OPTIMA 7000 DV OPERATING CONDITIONS	
Spray chamber	Cyclonic
Nebulizer	GemCone
Injector	2.0 mm Alumina
Plasma gas	15 L
Auxillary gas	0.2 L
Nebulizer gas	0.60 L
RF Power	1300 W
Plasma view	Axial
Read delay	30 s
Peristaltic pump flow rate	1.50 mL/min
Replicates	3

 Table S1: ICP-OES operating conditions.

Figure S2. The length the fluid front traveled with respect to time for A) Brand A; B) Brand B; and C) Brand C.

