**Supplementary for:** 

## Asymmetric Schiff Base Functionalized Gold Nanoparticles based

colorimetric sensor for Hg<sup>2+</sup> ions Determination: Experimental and DFT

Study

Fereshteh Amourizi<sup>a</sup>, Kheibar Dashtian<sup>a</sup>, Mehrorang Ghaedi<sup>a 1</sup>, Behzad Hosseinzadeh<sup>b</sup>

<sup>a</sup>Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran <sup>b</sup>Depatment of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran

<sup>&</sup>lt;sup>1</sup>Corresponding author: Telefax: +98 74-33223048.

E-mail address: m\_ghaedi@mail.yu.ac.ir



Figure 1 Parity plot showing the correlation between the observed and predicted values

Table S1. Instruments

| Instrument          | Model      | Company        | Country     |
|---------------------|------------|----------------|-------------|
| Field emission      |            |                |             |
| scanning electron   | Zeiss Jena | Sigma          | Germany     |
| microscopy          |            |                |             |
| Ultraviolet-Visible | Т80+       | PG             | England     |
| spectrophotometer   | 100        | 10             | England     |
| Fourier Transform   |            |                |             |
| Infrared            | FT-IR 6300 | Jasco          | Japan       |
| Spectroscopy        |            |                |             |
| Dynamic light       | V1 04      | LS Instruments | Switzerland |
| scattering          | V 1.04     | Lo mortumento  | Switzerlund |

## Table S2. Chemicals

| Chemical formula           | Company | Country |
|----------------------------|---------|---------|
| Hydrogen tetrachloroaurate | Merck   | Germany |
| hydrate                    | WORK    | Germany |
| 3,4-diaminotoloene         | Merck   | Germany |
| Benzaldehyde               | Merck   | Germany |
| Polyvinyl alcohol          | Merck   | Germany |
| Trisodium citrate          | Merck   | Germany |
| Mercury(II) nitrate        | Merck   | Germany |

| Factor | Name                  | Units | Minimum | Maximum | Coded  | Values  | Mean    |
|--------|-----------------------|-------|---------|---------|--------|---------|---------|
| A      | GNPs volume           | mL    | 500.00  | 1500.00 | 750.00 | 1250.00 | 1000.00 |
| В      | Schiff base<br>volume | mL    | 100.00  | 300.00  | 150.00 | 250.00  | 200.00  |
| C      | pH                    | -     | 2.00    | 8.00    | 3.50   | 6.50    | 5.00    |
| D      | Response<br>Time      | S     | 20.00   | 100.00  | 40.00  | 80.00   | 60.00   |

Table S3. Experimental range and level of independent variables

| Source           | Sequential         | Lack of Fit   | Adjusted         | Predicted        |           |
|------------------|--------------------|---------------|------------------|------------------|-----------|
|                  | p-value            |               | <b>R-Squared</b> | <b>R-Squared</b> |           |
| Linear           | 0.0073             | 0.0003        | 0.4535           | 0.2172           |           |
| 2FI              | 0.5849             | 0.0002        | 0.4117           | -0.4534          |           |
| <u>Quadratic</u> | <u>&lt; 0.0001</u> | <u>0.9196</u> | <u>0.9938</u>    | <u>0.9879</u>    | Suggested |
| Cubic            | 0.9196             |               | 0.9911           |                  | Aliased   |

 Table S4. The sequential model sum of squares for CCD analysis

| Source     | Sum of<br>Squares | df | Mean Square       | F Value | p-value Prob > F |           |
|------------|-------------------|----|-------------------|---------|------------------|-----------|
| Linear     | 0.35              | 12 | 0.029             | 81.13   | 0.0003           |           |
| 2FI        | 0.23              | 6  | 0.039             | 108.95  | 0.0002           |           |
| Quadratic  | <u>6.120E-005</u> | 2  | <u>3.060E-005</u> | 0.086   | <u>0.9196</u>    | Suggested |
| Cubic      | 0.000             | 0  |                   |         |                  | Aliased   |
| Pure Error | 1.431E-003        | 4  | 3.577E-004        |         |                  |           |

Table S5. Lack of fit tests for CCD analysis

| Source           | Std.<br>Dev. | R-<br>Squared | Adjusted R-<br>Squared | Predicted R-<br>Squared | PRESS             |           |
|------------------|--------------|---------------|------------------------|-------------------------|-------------------|-----------|
| Linear           | 0.15         | 0.5628        | 0.4535                 | 0.2172                  | 0.63              |           |
| 2FI              | 0.15         | 0.7058        | 0.4117                 | -0.4534                 | 1.16              |           |
| <b>Quadratic</b> | <u>0.016</u> | <u>0.9981</u> | <u>0.9938</u>          | <u>0.9879</u>           | <u>9.665E-003</u> | Suggested |
| Cubic            | 0.019        | 0.9982        | 0.9911                 |                         | +                 | Aliased   |

Table S6. Model summary statistics for CCD analysis

## Table S7. Model summary statics

| Std. Dev.         | 0.016      | <b>R-Squared</b> | 0.9981 |
|-------------------|------------|------------------|--------|
| Mean              | 0.65       | Adj R-Squared    | 0.9938 |
| C.V. %            | 2.43       | Pred R-Squared   | 0.9879 |
| PRESS             | 9.665E-003 | Adeq Precision   | 49.137 |
| -2 Log Likelihood | -141.00    | BIC              | -95.33 |
|                   |            | AICc             | -15.00 |

| Source                 | Sum of<br>Squares | df | Mean<br>Square | F<br>Value | p-value  |
|------------------------|-------------------|----|----------------|------------|----------|
| Model                  | 0.80              | 14 | 0.057          | 229.31     | < 0.0001 |
| A-Au Concentration     | 0.15              | 1  | 0.15           | 586.26     | < 0.0001 |
| B-Ligand Concentration | 0.080             | 1  | 0.080          | 321.89     | < 0.0001 |
| C-pH                   | 0.043             | 1  | 0.043          | 171.90     | < 0.0001 |
| D-Response Time        | 0.10              | 1  | 0.10           | 407.18     | < 0.0001 |
| AB                     | 0.078             | 1  | 0.078          | 313.72     | < 0.0001 |
| AC                     | 3.647E-003        | 1  | 3.647E-003     | 14.66      | 0.0087   |
| AD                     | 3.056E-003        | 1  | 3.056E-003     | 12.29      | 0.0127   |
| BC                     | 3.495E-003        | 1  | 3.495E-003     | 14.05      | 0.0095   |
| BD                     | 9.433E-004        | 1  | 9.433E-004     | 3.79       | 0.0994   |
| CD                     | 0.025             | 1  | 0.025          | 101.49     | < 0.0001 |
| A <sup>2</sup>         | 0.015             | 1  | 0.015          | 60.58      | 0.0002   |
| B <sup>2</sup>         | 8.145E-003        | 1  | 8.145E-003     | 32.76      | 0.0012   |
| $C^2$                  | 0.23              | 1  | 0.23           | 908.49     | < 0.0001 |
| D <sup>2</sup>         | 0.034             | 1  | 0.034          | 136.34     | < 0.0001 |
| Residual               | 1.492E-003        | 6  | 2.487E-004     |            |          |
| Lack of Fit            | 6.120E-005        | 2  | 3.060E-005     | 0.086      | 0.9196   |
| Pure Error             | 1.431E-003        | 4  | 3.577E-004     |            |          |
| Cor Total              | 0.80              | 20 |                |            |          |

Table S8. The results of ANOVA for the response surface quadratic model by the proposed colorimetric sensor