Fluorescence biosensor for Salmonella typhimurium detection in food

based on nano-self-assembly of alendronic acid modified

upconversion and gold nanoparticles

Min Chen, Leiqing Pan, Kang Tu* College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China Table 1S The comparison with other methods for selectivity of

Methods	Salmonella typhimurium(target)	Other food-borne pathogens (non tagert)	Times (non tagert/target)	Reference
Fluorescence probe	10 ³ CFU/mL	10 ³ CFU/mL	1	[1]
Impedimetric immunosensor	10 ⁴ CFU/mL	10 ⁵ CFU/mL	10	[2]
ELISA Our method	10 ⁶ CFU/mL 10 ⁴ CFU/mL	10 ⁶ CFU/mL 10 ⁶ CFU/mL	1 100	[3]

Salmonella typhimurium

References

[1] R. wang, Y. Xu, T. Zhang, Y. Jiang, Rapid and sensitive detection of Salmonella typhimurium using aptamer-conjugated carbon dots as fluorescence probe, Anal Methods, 2015,7,1701-1706.

[2] M. Ruchi, J. Monu, P. Preeti, S .Arunima, S. D.K, S. Raman, Novel surface antigen based impedimetric immunosensor for detection of Salmonella typhimurium in water and juice samples, Biosens Bioelectron, 2016, 85, 707-713.

[3] W. Wang, L. Liu, S. Song, L. Tang, H. Kuang C. Xu, A highly sensitive ELISA and immunochromatographic strip for the detection of Salmonella typhimurium in milk samples, Sensors, 2015, 15(3), 5281-5292.