Supporting Information (SI)

Reasonable design of MXene-based enzyme-free amperometric sensing interface for highly sensitive hydrogen peroxide detection

Fenghui Zhu, Xiuyun Wang*, Xiaowen Yang, Chenfei Zhao, Yue Zhang, Siqi Qu, Shuo Wu, Wei Ji School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China

Figure S1. (A) I-t curve of electrodeposited Prussian blue in an aqueous electrolyte containing 2.5 mM FeCl₃, 2.5 mM K₃Fe(CN)₆, 0.1 M KCl and 0.01 M HCl. (B) CV curves of Prussian blue activated in 0.01 M HCl contain 0.1 M KCl. Scan rate: 50 mV s⁻¹.

Figure S2. CVs of bare GCE (black) and PB/GCE (blue) in 5 mM $[Fe(CN)_6]^{3-/4-}$ containing 0.1 M KCl. Scan rate: 50 mV s⁻¹.

Figure S3. CVs of GCE (A), CS/GCE (B), MX/CS/GCE (C) and PB/GCE (D) in the absence (black) and presence (red) of 5 mM H_2O_2 in 0.1 M phosphate buffer (pH 6.0).

Figure S4. Raman spectra from GCE, CS/GCE, MX/GCE, PB/GCE, CS/PB/GCE and MX/CS/PB/GCE. Excitation wavelength is 765 nm (300 mW).

Figure S5. (A) CVs of MX/CS/PB/GCE in 5 mM $[Fe(CN)_6]^{3-/4-}$ containing 0.1 M KCl with different scan rates: 10 mV s⁻¹, 50 mV s⁻¹, 100 mV s⁻¹, 150 mV s⁻¹, 200 mV s⁻¹, 250 mV s⁻¹, 300 mV s⁻¹ (from inner to outer), respectively. (B) Plot of peak currents versus the square root of scan rates ($\nu^{1/2}$).

Figure S6. (A) CVs of MX/CS/PB/GCE in 0.1 M phosphate buffer (pH 6.0) with different concentrations of AA. Scan rate: 100 mV s⁻¹. (B) Amperometric response of MX/CS/PB/GCE during continuous injection of AA and H_2O_2 . Applied potential: -0.2 V vs Ag/AgCl.

Figure S7. (A) The reproducibility of MX/CS/PB/GCE was obtained in the same batch of different electrodes in 0.1 M phosphate buffer (pH 6.0) containing 20 μ M H₂O₂. (B) The stability of MX/CS/PB/GCE was tested ten times continuously in 0.1 M phosphate buffer (pH 6.0) containing 100 μ M H₂O₂.

Figure S8. Amperometric response of MX/CS/PB/GCE with different samples (pH 6.0) contain 20 μ M H₂O₂ (A-C) and 20 μ M H₂O₂ standard solution (D).

Region	Assigned to	BE/eV	Ref
Ti 2p	Ti-C	455.01	1
	Ti ²⁺	455.76	2
	Ti ³⁺	456.58	2
	Ti-O (TiO ₂)	458.39	
C 1s	C-C	284.6	3
	C-Ti	281.58	4
O 1s	TiO ₂	530.43	
	C-Ti-O _x	531.55	
F 1s	C-Ti-(OH) _x	532.71	5
	C-Ti-F _x	684.43	

Table S1. XPS peak fitting results for MX.

Reference

- 1. R. Cheng, Z. Wang, C. Cui, T. Hu, B. Fan, H. Wang, Y. Liang, C. Zhang, H. Zhang and X. Wang, *The Journal of Physical Chemistry C*, 2020, **124**, 6012-6021.
- 2. X. Wang, M. Li, S. Yang and J. Shan, *Electrochimica Acta*, 2020, **359**, 136938.
- 3. D.-D. Han, S. Liu, Y.-T. Liu, Z. Zhang, G.-R. Li and X.-P. Gao, *Journal of Materials Chemistry A*, 2018, **6**, 18627-18634.
- 4. E. H. Kisi, J. A. A. Crossley, S. Myhra and M. W. Barsoum, *Journal of Physics and Chemistry* of Solids, 1998, **59**, 1437-1443.
- 5. J. Halim, K. M. Cook, M. Naguib, P. Eklund, Y. Gogotsi, J. Rosen and M. W. Barsoum, *Applied Surface Science*, 2016, **362**, 406-417.