Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2021

Supporting information

The Determination of Standard Curve

The procedure for determining standard curve of each aldehyde and ketone is as follows. The standard solutions including acetaldehyde 2,4-dinitrophenylhydrazone (AA-DNPH, 200, 160, 100, 50 and 20 mg/L), propionaldehyde 2,4-dinitrophenylhydrazone (PA-DNPH, 100, 80, 50, 20 and 10 mg/L), formaldehyde 2,4-dinitrophenylhydrazone, acetone 2,4-dinitrophenylhydrazone and 2-methyl-2-pentenal 2,4-dinitrophenylhydrazone (FA-DNPH, ACE-DNPH and MP-DNPH, 40, 20, 10, 5 and 4 mg/L, respectively) were prepared and analyzed by HPLC to draw a standard curve.

All compositions in propionic acid were analyzed by GC-MS, and the compounds were identified by comparing mass spectra with NIST 2014 mass spectrum database. The total ion current and mass spectrum of propionic acid are shown in Fig. S1/S2.

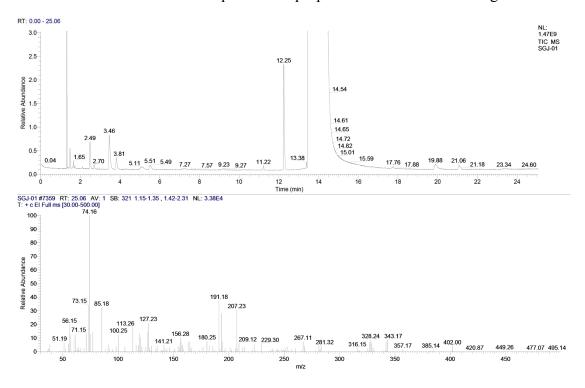


Fig. S1 The total ion current and mass spectrum of propionic acid

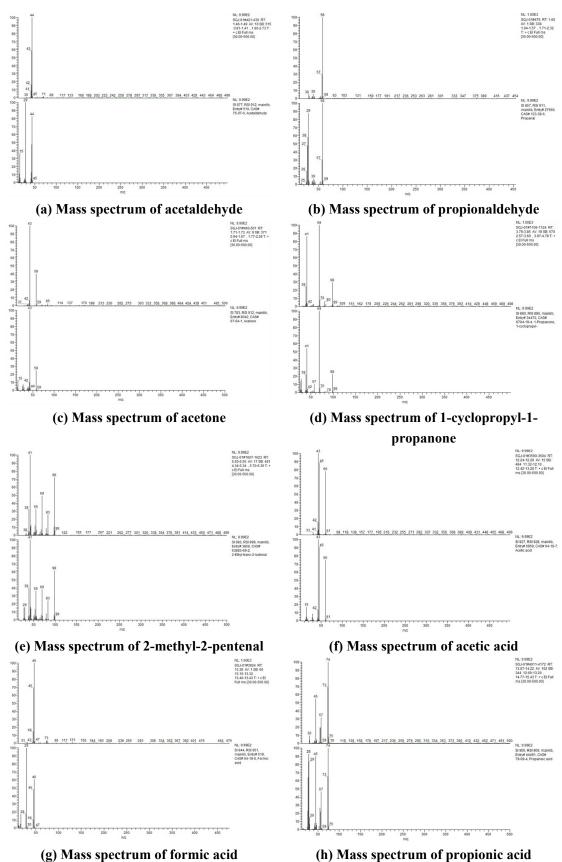


Fig. S2 Mass spectrums of the main compounds in propionic acid

The relative calibration factors of all compositions in propionic acid are shown in Table S1.

Table S1 Relative calibration factors of all components in propionic acid by GC (n=5)

Number	Nama	Retention	Volume,	Mass,	Relative calibration factors					
	Name	time, min	μL	g	1	2	3	4	5	Average
1	Formaldehyde	2.55	40.0	0.0126	1.0499	0.7444	1.1702	0.9172	0.9786	0.9721
2	Acetaldehyde	2.83	90.0	0.0698	1.0772	1.0316	1.0465	1.0290	1.2276	1.0824
3	Propionaldehyde	3.09	46.4	0.0397	0.9459	0.9316	0.9021	0.9528	1.0180	0.9501
4	Acetone	3.20	11.6	0.0091	0.8675	0.7047	0.8330	0.8173	0.8456	0.8136
5	Methyl propionate	3.74	7.2	0.0065	0.9820	0.8871	1.0843	0.9218	0.9855	0.9721
6	Ethanol	3.93	10.0	0.0079	0.6830	0.7378	0.6860	0.8983	0.8126	0.7635
7	Ethyl propionate	4.20	110.0	0.0978	0.7304	0.7321	0.7346	0.7370	0.8853	0.7639
8	3-Pentanone	4.48	22.4	0.0182	0.5843	0.7332	0.5298	0.5486	0.5710	0.5934
9	Propyl propionate	5.35	210.0	0.1835	0.6408	0.7696	0.6537	0.6473	0.6528	0.6728
10	2-Methyl-2-pentenal	7.70	55.2	0.0462	0.5505	0.5283	0.5194	0.5947	0.5493	0.5484
11	Acetic acid	14.68	325.6	0.3384	1.7681	1.6496	1.8089	1.7037	1.8256	1.7512
12	Formic acid	15.73	10.5	0.0126	2.3826	2.3828	1.5089	2.0476	2.2650	2.1174
13	Propionic acid	15.81			1	1	1	1	1	1
14	2-Methylbutanoic acid	19.00	14.6	0.0135	1.2498	1.2752	1.4891	1.5463	1.4637	1.4048
15	2-Methylvaleric acid	19.71	50.0	0.0451	2.8725	2.0466	2.1026	2.7234	2.0773	2.3645

The spiked recoveries are shown in Table S2.

Table S2 Spiked recoveries of phenylhydrazone in propionic acid-DNPH solution (n=3)

Number	Name	C_0 , mg/L	C_I , mg/L	C_2 , mg/L	Spiked recovery (P), %
1	FA-DNPH	2.450	5.114	3.874	107.52
		4.900	5.114	5.246	109.76
		9.800	5.114	7.855	108.12
2	AA-DNPH	34.094	69.420	52.086	101.93
		68.188	69.420	68.941	100.40
		136.377	69.420	103.110	100.31
3	ACE-DNPH	4.959	8.693	7.085	110.45
		9.918	8.693	9.752	109.01
		19.835	8.693	15.032	107.74
4	PA-DNPH	12.901	24.335	18.953	105.20
		25.802	24.335	25.367	102.32
		51.604	24.335	38.045	100.29
5	MP-DNPH	5.434	10.589	8.078	102.44
		10.867	10.589	10.812	101.54
		21.734	10.589	16.243	100.75

Note: C_0 , C_1 and C_2 is the content of FA-DNPH/AA-DNPH/ACE-DNPH/PA-DNPH/MP-DNPH in the standard solution, propionic acid derivative solution and the spiked sample, respectively, mg/L

The comparison results of total aldehyde content (as propionaldehyde) in different batches of propionic acid product by GC, HPLC and titration are shown in Table S3.

Table S3 Comparison of analysis results of total aldehyde content (as propionaldehyde) in

Table S3 Comparison of analysis results of total aldehyde content (as propionaldehyde) in different production batches of propionic acid by 3 methods

N		Method	Content, mg/L							_
0	Batch		Formald ehyde	Acetalde hyde	Acetone	Propional dehyde	1-Cyclopropyl- 1-propanone	2-Methyl- 2-pentenal	Total aldehyde content (as propionaldehyde)	RSD, %
		GC	0	78.303	8.803	41.887	43.407	32.124	198.693	3.54
1	201803	HPLC	4.350	82.093	13.006	35.482	30.621	21.740	196.170	0.87
		Titration							577	5.38
		GC	6.584	132.937	11.111	65.303	68.116	55.854	337.890	7.84
2	201804	HPLC	8.265	138.249	16.769	61.863	59.173	40.190	335.780	0.17
		Titration							933	4.08
		GC	0	125.767	10.378	63.763	47.248	34.962	288.681	3.57
3	201808	HPLC	6.525	130.607	16.583	59.957	33.081	26.570	296.715	2.04
		Titration							840	1.89
		GC	0	69.866	8.950	42.874	50.088	33.549	193.505	2.21
4	201906	HPLC	1.958	83.468	12.275	35.125	36.944	28.513	200.029	1.07
		Titration							564	6.82
		GC	0	62.175	5.722	27.227	35.834	20.881	148.535	5.12
5	202012	HPLC	2.828	74.863	8.454	23.063	23.572	13.617	157.730	3.03
		Titration							386	8.77
						-				