1	Supporting Information
2	
3	An integrating strategy for serum metabolomics and microarray
4	analysis to expand the understanding of diet-induced obesity
5	Wuping Liu ¹ , Jingjing Xu ¹ , Tao Dai ² , Guiping Shen ^{1,*} , Jianghua Feng ^{1,*}
6	
7	Author affiliations
8	¹ Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic
9	Resonance, Xiamen University, Xiamen, 361005, China
10	² Third Affiliated Hospital, Henan University of Science and Technology, Luoyang, 471003,
11	China
12	
13	* Corresponding Author:
14	Address: Department of Electronic Science, Xiamen University, 422 Siming South
15	Road, Siming District, Xiamen, Fujian 361005, China
16	Jianghua Feng, Email address: jianghua.feng@xmu.edu.cn
17	Guiping Shen, Email address: gpshen@xmu.edu.cn.
18	
19	Abbreviations
20	LDL: low density lipoprotein
21	NAG: N-Acetylglutamate
22	PAG: Phenylacetyglycine
23	PUFA: polyunsaturated fatty acid
24	VLDL: very low density lipoprotein
25	
26	
27	

No.	Metabolites	¹ H chemical shift,	No.	Metabolites	¹ H chemical shift,	
1101		ppm (multiplivity)	1101		ppm (multiplivity)	
1	LDL	0.88(br),1.27(br)	19	Citrate	2.54(d),2.69(d)	
2	Leucine	0.95(t)	20	Ketoleucine	2.65(d)	
3	Isoleucine	0.98(t),1.02(d)	21	Aspartate	2.68(m)	
4	Valine	1.04(d)	22	Sarcosine	2.74(s), 3.60(s)	
5	Ethanol	1.18(t)	23	Creatine	3.03(s), 3.93(s)	
6	Lactate	1.33(d),4.12(q)	24	Histidine	3.25(m)	
7	L-Alanine	1.48(d)	25		3.42(t),3.54(dd),3.72(t),	
8	VLDL	1.31(br),1.58(br)	25	a-glucose	3.74(mm),5.24(d)	
9	Lipid	1.78(br),2.75(br)	26	Tryptophan	3.21(dd), 3.49(dd)	
10	Acetate	1.91(s)	27	Methylxanthine	3.51(s)	
11	NAG	2.04(s)	28	Glycine	3.56(s)	
12	Methionine	2.13(s),2.650(t)	29	PAG	3.69(s),3.76(d)	
12	Acetone	2.22(s)	30	0.1	3.25(dd),3.46(t),3.9(dd),	
13				β-glucose	4.65(dd)	
14	p-Cresol	2.25(s)	31	Glycolic acid	3.93 (s)	
15	Acetoacetate	2.30(s)	32	PUFA	5.30(br)	
16	Pyruvate	2.36(s)	33	Tyrosine	6.89(d);7.05(d)	
17	Succinic acid	2.390(s)	34	Methyhlhistidine	7.05(s),7.82(s)	
18	Glutamine	2.14(m),2.44(m)	35	Formate	8.45(s)	

Table S1. Identified metabolites from the NMR spectra of rat serum

29 Multiplicity: s, singlet; d, doublet; t, triplet; q, quartet; dd, doublets; m, multiplet, br, broad peaks

Metabolites	$\delta(^{1}H, multiplicity, assignments)$	Correlation coefficient	VIP	p-value	KEGG ID
LDL	0.88 (br, -CH ₃), 1.22-1.30 (br)	0.688	5.037	0.004	C01595
Lactate	1.33 (d, -CH ₃),4.12(q, -CH)	0.538	6.339	0.048	C00186
Alanine	1.48 (d, β-CH ₃)	0.694	3.919	0.015	C00041
Pyruvate	2.37 (s, -CH ₃)	-0.569	1.021	0.036	C00022
Acetoacetate	2.30 (s, -CH ₃)	-0.667	1.473	0.016	C00383
Citrate	2.54 (d, -CH ₂)	-0.597	1.335	0.026	C00300
Aspartate	2.68 (dd, β-CH ₃)	-0.567	1.426	0.029	C00245
Sarcosine	2.74 (s, -CH ₃)	-0.863	3.522	0.00021	C00037
Histidine	3.17-3.29(m, β-CH)	-0.661	3.395	0.016	C01026

Table S2. Identified potential biomarkers from the NMR spectra of rat serum and

32

their related parameters

33 s: singlet; d: doublet; q: quartet; dd: doublets; m: multiplet, br: broad peaks

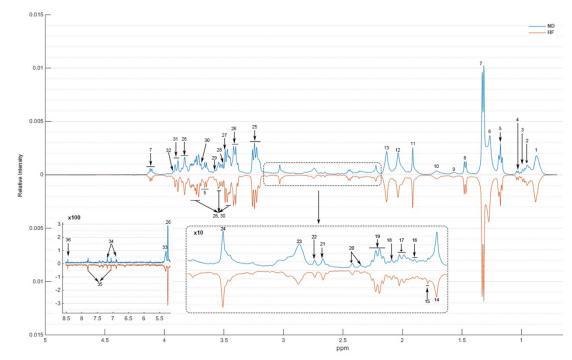
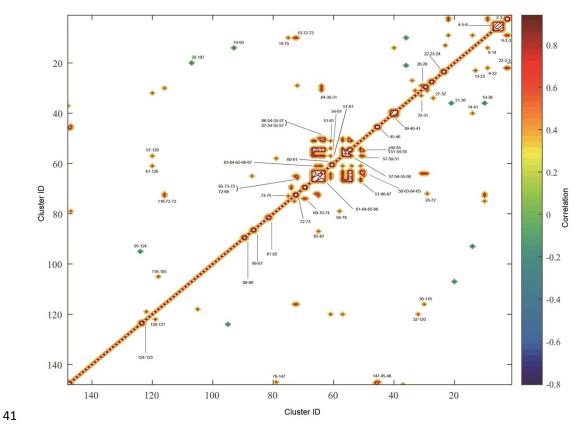



Fig. S1. Mean ¹H NMR serum spectra of ND and HF groups. (the spectral regions of 2.2-3.2 ppm
(the dashed box) and 5.0-8.6 ppm (the lower left corner) were vertically expanded 10 and 100
times compared to the remaining spectral region for the purpose of clarity. The keys for the
numbers of assigned metabolites are given in Table S1.)

42 Fig. S2. 2D representation of an RSTOCSY pseudospectrum based on the clusters obtained by 43 statistical recoupling of variables on the serum dataset. Fifty-six correlation areas are identified for 44 a correlation threshold of 0.8 representing spin and metabolic connectivities between 2 or more 45 clusters (these data show in https://github.com/liuwuping/RSTOCSY). The degree of 46 correlations between clusters has been color-coded (positive correlations in red and negative 47 correlations in blue).