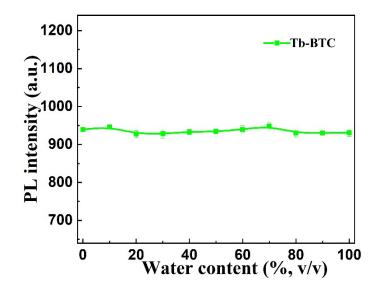

Electronic Supporting Information

For


Facile Synthesis of Highly Luminescent Rod-like Terbium-based Metal-organic Frameworks for Sensitive Detection of Olaquindox

Ling Li, Miaomiao Zhang, Ran Li, Huan Jiang, and Zhongde Liu*

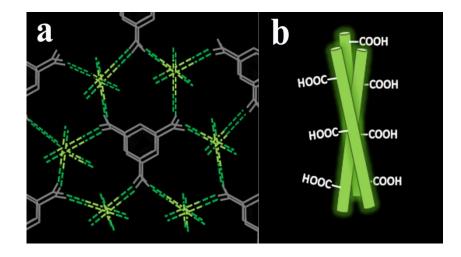

Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Science, Southwest University, Chongqing 400716, China. Tel: +86-23-68251910. Fax: +86-23-68251048. E-mail: lzdzhy@swu.edu.cn.

Figure S1 (a) Photographs of the as-prepared terbium-based MOFs in a similar manner using different kinds of organic ligands under daylight (top) and 254 nm UV light (bottom), from 1 to 6: 5-Nitrobenzene-1, 3-dicarboxylic acid (5-NIPA), 3, 5-Dicarboxyphenylboronic acid (5-BOP), 4-Formylphenylboronic acid (4-FPBA), Terephthalic acid (PTA), Isophthalic acid (IPA), benzene-1, 3, 5-tricarboxylic acid (H₃BTC); (b) the PL spectra of the corresponding terbium-based MOFs.

Figure S2 Effect of the different water content exposure on PL intensity of the Tb-BTC MOFs.

Figure S3 (a) The possible molecular-packing diagram of the Tb-BTC viewed along the c-axis; (b) schematic description of the rod-like terbium-based MOFs.

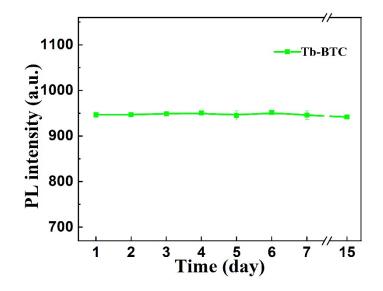
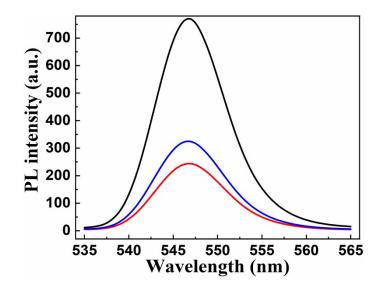



Figure S4 The long term stability of the PL property of the Tb-BTC.

Figure S5 Verification of the binding of OLA molecules on the surface of Tb-BTC. The black curve, the Tb-BTC suspension; the red curve, the mixture of the Tb-BTC and OLA; the blue curve, the resuspension solution of the precipitates obtained from the mixture of the Tb-BTC and OLA by centrifuge; Concentration: Tb-BTC, 0.2 mg/mL; OLA, 1.0 mM; pH 10.0.

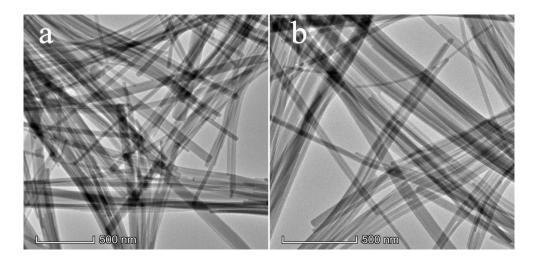


Figure S6 TEM images of the as-prepared Tb-BTC MOFs in the absence (a) and presence of 50.0μ M of OLA in the BR buffer (pH 10.0).

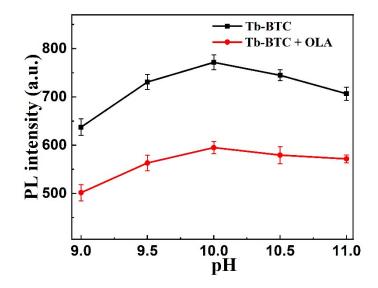


Figure S7 Effect of pH on the PL intensity of Tb-BTC MOFs in the absence (black curve) and presence (red curve) of OLA. Concentration: Tb-BTC, 0.2 mg/mL; OLA, 10.0μ M.

Method	Material used	Sample	Linear range	LOD	Measure time (min)	Reference
FELISA	BSA-AuNCs	Feed	1.0 – 150 µg/kg	0.68 µg/kg	1.5 h	[1]
electrochemical	spSWCNTs	pork	0.1 - 500 nM	30.0 pM	25 min	[2]
FLISA	QDs	pork	0.1-10.0 ng/mL	0.07 µg/L	1 h	[3]
chemiluminescence	molecularly imprinted	Feed	$0.02-1.0.\ \mu g/mL$	7 ng/mL	25 min	[4]
ELISA		Feed	$1.0-90.0\ \mu g/L$	1µg/kg	1.25 h	[5]
immunochromatography	FMs	foodstuffs	sigmoid curves	0.9 µg/kg	15 min	[6]
immunochromatographic lateral flow test strips	colloidal gold	pork	0.31 - 29.06 ng/mL	$0.31\pm0.07~\mu\text{g/kg}$	5 - 8 min	[7]
		urine	0.27 - 29.30 ng/mL	$0.27\pm0.08~\mu\text{g/kg}$		
LC - MS/MS	IAC	Fish	$0.5-100.0\;\mu\text{g/L}$	0.01 µg/kg	7 min	[8]
UPLC-MS/MS	HLB cartridge	Feed	0.025 - 1.0 mg/kg	0.015 mg/kg	6 min	[9]
GICA	AuNPs	Feed	0.9 - 43.62 μg/L	0.46 µg/L	5 min	[10]
Fluorescent	Tb-BTC	Feed/Pork/Fish	$1.0-1000.0\;\mu M$	20.6 nM (4.87 ng/mL)	5 min	This work

Table S1 A brief summary of various methods for detection of OLA.

References

- T. Peng, J. Wang, S. Xie, K. Yao, P. Zheng, Y. Ke, H. Jiang, Food Additives & Contaminants: Part A, 2019, 36, 752-761.
- [2] H. Wang, Y. Liu, S. Yao, G. Hu, Analytica Chimica Acta, 2019, 1049, 82-90.
- [3] T. Le, L. Zhu, H. Yu, Food Chemistry, 2016, 199, 70-74.
- [4] Z. Xu, J. Song, L. Li, X. Qiao, H. Chen, J Sci Food Agric, 2012, 92, 2696–2702.
- [5] L. Wang, J. Zhang, D. Cui, X. Wang, H. Yang, K. Zhang, Z. Qin, J. Meng, G. Hao & J. Li, *Analytical Letters*, 2014, 47, 1015–1030.
- [6] T. Peng, X. Pei, Y. Zheng, J. Wang, Q. Wang, J. Li, X. Xia, H. Jiang, Food and Agricultural Immunology, 2017, 28, 1544-1554.
- [7] C. Song, Q. Liu, A. Zhi, J. Yang, Y. Zhi, Q. Li, X. Hu, R. Deng, J. Casas, L. Tang, G. Zhang, J. Agric. Food Chem. 2011, 59, 9319–9326.
- [8] J. Xie, W. Zeng, X. Gong, R. Zhai, Z. Huang, M. Liu, G. Shi, Y. Jiang, X. Dai, X. Fang, Food Analytical Methods, 2019, 12, 2665–2674.
- [9] X. Miao, L. Xua, H. Li, Z. Yang, Food Additives & Contaminants: Part A, 2018, 35, 1257-1265.
- [10] X. Pei, Q. Wang, X. Li, J. Xie, S. Xie, T. Peng, C. Wang, Y. Sun, H. Jiang, Food Anal. Methods, 2016, 9, 919–1927.