Supplementary Material

Thermo-sensitivity of hybrid nanogels for specific endogenous hydrogen sulfide detection and efficient flash chill treatment

Xuhao Sun^a, Qiu-bo Wang^a, Li Pan^a, Yi-lin Mu^a, Xian Zhang^{a*} and Zhao-e Liu^{b*}

^a School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

^b Qilu Hospital of Shandong University, Jinan 250012, China

* Correspondence: zhangx@qlu.edu.cn, byts1995@163.com

1. Synthesis of functionalized fluorescent nanoparticles PNPs.COOH

The carboxyl-modified fluorescent nanoparticles PNPs_{-COOH} were synthesized by a previously reported co-precipitation method. 10 mg fluorescent conjugated polymer (TPb) and 20 mg polystyrene-maleic anhydride (PSMA) copolymer were dissolved by 10 mL tetrahydrofuran, respectively. fluorescent conjugated polymer reserve solution (1 mg/mL) and PSMA reserve solution (2 mg/mL) were prepared.

The conjugated polymer solution of 0.5 mL and PSMA solution of 0.1 mL were taken from the reserve solution and stirred toanhydrous THF (9.4 mL) to form a homogeneous solution containing conjugated polymer (50 μ g/mL) and PSMA (20 ug/mL). Then in ice bath and ultrasonic environment, the solution was quickly added to 20 mL ultra-pure water and the ultrasound lasted for 5-10 minutes. Finally, THF was removed by rotating evaporator and the solution was concentrated to 10 mL. A clear yellow-green liquid was obtained by filtration with a filter head with a diameter of 0.22 μ m (PNPs_{-COOH} concentration 50 μ g/mL).

Fig. S1 (a)TEM image of the PNPs_COOH and (a) the particle size distribution of PNPs_COOH.

2. Fe³⁺/Poly(NIPAM- AAM)-PNPs-COOH hybrid system

PNPs_{-COOH} can chelate with Fe³⁺ to induce fluorescence quenching. The Poly (NIPAM-AAM)-PNPs_{-COOH} hybrid nanogels also has this performance. With the increase of Fe³⁺ concentration (0-800 μ mol/L), the fluorescence signal of hybrid nanogels are obvious quenched. A linear correlation between the PL intensity and Fe³⁺ can be established across the concentration range of 0-800 μ mol/L,R value about 0.973.

Fig. S2 (a) Fe³⁺ Sensitivity of Poly(NIPAM-AAm)-PNPs_{-COOH}. (b) Fe³⁺ concentration range 0, 40, 80, 120, 160, 200, 400, 800 μmol/L.

Fig. S3 The effect of incubation time (0-300 s) between Fe³⁺ /Poly (NIPAM-AAm)-PNPs_{-COOH} and Na₂S

Fig. S4 (a)Fluorescence spectra of Fe³⁺/Poly (NIPAM-AAm)-PNPs_{-COOH} in the presence of different disturbed substances(1 mM). (b) The selective fluorescence histogram of Fe³⁺/Poly (NIPAM-AAm)-PNPs_{-COOH} for S²⁻.

Detection Nanoprobes	LOD (10 ⁻⁶ M)	Linear Range(10 ⁻⁶ M)	References
TPSNP	0.86	0-5	[1]
Au Nanosphere Array with Silver Coating	0.79	2-30	2
SulpHensor	0.5	0-10	3

Table S1. The limitation of detection in reported methods.

Ag NPI-coated	0.52	1.64-16.4	4
Fluorescent probe Na-H ₂ S-ER.	7.7	0-150	5
TMSDNPOB	1.27	0-50	6
Silver/Nafion-containing PVP membranes	1.4	3.125-50	7
Fe ³⁺ /Poly(NIPAM- AAM)-PNPs _{-COOH}	0.409	0-30	this work

References:

- P. Wang, C. Zhang, H. W. Liu, M.y. Xiong, S. y. Yin, Y. Yang, X. x. Hu, X.Yin, X. B Zhang, W. Tan, Supramolecular assembly affording a ratiometric two-photon fluorescent nanoprobe for quantitative detection and bioimaging. *Chem. Sci.*, 2017, 8, 8214-8220.
- [2]. X. j. Li, T. Zhang, J. Yu, C. c. Xing, X. y. Li, W.p. Cai, Y Li, Highly Selective and Sensitive Detection of Hydrogen Sulfide by the Diffraction Peak of Periodic Au Nanoparticle Array with Silver Coating, ACS Applied Materials & Interfaces., 2020, 12, 40702-40710.
- [3]. S. Yang, Y. Qi, C. h. Liu, Y. j. Wang, Y. r. Zhao, L. l. Wang, J. s. Li, W. h. Tan, R. h. Yang, Design of a Simultaneous Target and Location-Activatable Fluorescent Probe for Visualizing Hydrogen Sulfide in Lysosomes. *Analytical Chemistry*, 2014, 86, 7508-7515.
- [4]. Y. J. Ahn, Y. G. Gil, Y. J. Lee, H. Jang, G. J. Lee, A dual-mode colorimetric and SERS detection of hydrogen sulfide in live prostate cancer cells using a silver nanoplate-coated paper assay. *Microchemical Journal*, 2020, 155, 104724.
- [5]. Y. Tang, A. Xu, Y. Ma, G. Xu, S. Gao, W. Lin, A turn-on endoplasmic reticulumtargeted twophoton fluorescent probe for hydrogen sulfide and bio-imaging applications in living cells, tissues, and zebrafish. *Sci. Rep.*, 2017, 7, 12944.
- [6]. Y. Ji, L. J. Xia, L. Chen, X. F. Guo, H. Wang, H. J. Zhang, A novel BODIPY-based fluorescent probe for selective detection of hydrogen sulfide in living cells and tissues. *Talanta*, 2018, 181, 104-111.
- [7]. J. Lee, Y. J. Lee, Y. J. Ahn, S. Choi, G. J. Lee, A simple and facile paper-based colorimetric assay for detection of free hydrogen sulfide in prostate cancer cells. *Sensors and Actuators B: Chemical*, 2018, 256, 828-834.