Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2021

Appendix

The geo-accumulation Index

$$I_{geo} = \frac{1}{1} \frac{Q_n}{Q_n} \frac{C_n}{1^g B_n} 5(1)$$

where C_n is the measured concentration of n in atmospheric sedimentation samples, and B_n is the geochemical background value of n in the earth's crust. A factor of 1.5 is used to compensate for changes that may be caused by changes in sediment lithology, and it takes into account the difference in background values.

Enrichment factor

$$\frac{C_{n}(\text{sample})/C_{\text{ref}}(\text{sample})}{E_{F} = B_{n}(\text{baseline})/B_{\text{ref}}(\text{baseline})}$$
(2)

where C_n is the sample concentration of the researched element, and Bn is the reference concentration of the researched element. C_{ref} and B_{ref} are the sample concentration and reference concentration of the referenced element.

The Potential Ecological Risk Index

$$F_{i} = \frac{c_{i}}{B_{i}} (3)$$

$$E_{r} = T_{i} \times F_{i} (4)$$

$$RI = \sum_{i} E_{r} (5)$$

 F_i is the single metal pollution coefficient, B_i is the metal background value, C_i is the metal concentration in the dust, E_r is the single element potential ecological risk index, RI is the multi-element comprehensive potential ecological risk index and T_i is the metal toxicity factor.

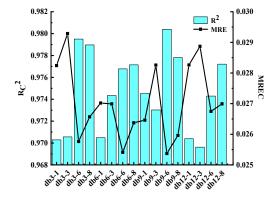


Fig S1 Influence of different wavelet basis function and decomposition layer on predictive performance of RF calibration model of $I_{\rm geo}$

Table S1 Standard of contamination degree by Geo-accumulation index

I geo	Class	Pollution level	
I geo<0	0	unpolluted	
$0 \le I_{geo} < 1$	1	Unpolluted to moderately polluted	
$1 \le I_{geo} < 2$	2	Moderately polluted	
$2 \le I_{geo} < 3$	3	Moderately to strongly polluted	
$3 \le I_{geo} < 4$	4	strongly polluted	
$4 \le I_{geo} < 5$	5	strongly to extremely polluted	
I geo>5	6	Extremely polluted	

Table S2 Contamination categories based on EF values

EF	Class	Pollution level	
EF<2	1	Minimal pollution	
$2 \le EF < 5$	2	Moderate pollution	
$5 \le EF < 20$	3	Significant pollution	
$20 \le EF < 40$	4	Very high pollution	
EF ≥ 40	5	Extremely high pollution	

Table S3 Toxicity coefficient standard of heavy metals

Element	Al	Cu	Cd	Pb	Cr	Zn
Toxicity factor	1	5	30	5	2	1

(Hakanson)

Table S4 Pollution categories based on $E_{r} \ and \ RI$

Er	RI	Class	Pollution level
E _r <40	RI<150	1	Low potential ecological risk
$40 \le E_r < 80$	$150 \le RI < 300$	2	Moderate potential ecological risk
$80 \le E_r < 160$	$300 \le RI < 600$	3	Considerable potential ecological risk
$160 \le E_r < 320$	RI ≥ 600	4	High potential ecological risk
$E_r \ge 320$		5	Very high ecological risk