Supplementary Information

Electrochemical sandwich-type immunosensor for detection of PSA based on trimetallic AgAuPt nanocomposite synthesized using galvanic replacement reaction

Akbar Khanmohammadi ^a, Abbas Afkhami ^b, Ali Hajian ^c, Hosein Khoshsafar ^a, Hasan Bagheri ^{d,*}

Figures captions:

Fig. S1 Effect of incubation time of Ab₁ at the surface of GCE/AgAuPt

Fig. S2 Effect of incubation time of BSA at the surface of GCE/AgAuPt/Ab₁

Fig. S3 Effect of incubation time of PSA at the surface of GCE/AgAuPt/Ab $_1$ /BSA

Fig. S4 Effect of incubation time of Ab₂-AgPt at the surface of GCE/AgAuPt/Ab₁/BSA/PSA

Fig. S5 Effect of H_2O_2 concentration in the DPV response of the proposed GCE/AgAuPt/Ab₁/BSA/PSA/Ab₂-AgPt immunoassay in the PBS buffer (pH=7.4) containing 5.0 mM Fe(CN)₆³⁻ as the redox probe

Fig. S6 Stability of the as-prepared immunoassay studied in the 7, 14 and 21 days after fabrication

Fig. S1

Fig. S2

Fig. S3

Fig. S4

Fig. S5

Fig. S6