2 Trace arsenic analysis in edible seaweeds by a miniature in-situ dielectric barrier discharge
3 microplasma optical emission spectrometry based on gas phase enrichment

5 a College of Instrumentation \& Electrical Engineering, Jilin University, Changchun 130023, China
6 b Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural
7 Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs,
8 Beijing 100081, China
9 c Beijing Ability Technique Company, Limited, Beijing 100081, China
10 Corresponding authors: Tel: +86-10-82106523, Fax: $+86-10-82106523$.
11 E-mail address: tiandi@jlu.edu.cn (D. Tian); ljx2117@gmail.com (J. X. Liu); lics@jlu.edu.cn (C. S. Li)

1. Electrode fabrication process

The electrode fabrication process using silver paste is described as follows: High temperature sintered conductive silver paste, which has good adhesion to quartz material and is suitable for the electrode printing of various electronic components, is used for DBD electrodes. First, the silver paste is evenly coated on the outer surface of DBD's outer quartz tube and the inner surface of DBD's inner quartz tube. After that, the DBD coated with silver paste is placed in a hot bellows set to $100^{\circ} \mathrm{C}$ for an hour to remove bubbles from silver paste. The DBD coated silver paste is then placed in a muffle oven at $650^{\circ} \mathrm{C}$ for an hour to sintered the silver paste onto the quartz surface. The photos of silver-coated DBD, DBD's inner quartz tube and outer quartz tube were as shown in Fig.S1.

2. Background correction method

In this paper, a background correction method is proposed to eliminate the influence of background fluctuation. In this method, a baseline is fitted according to Equation (1), in which fBase(i) indicates the intensity of point i on baseline curve, $f(i)$ indicates the intensity of point i on initial spectrum and dAver(i) indicates the average intensity of point i and its surrounding points on initial spectrum, which is calculated as Equation (2). In Equation (2), dindicates the number of point on one side on point i (in this experiment, d is
set as 13). After the baseline curve (fBase) is obtained, another baseline (fbase 2) is calculated by replacing $\mathrm{f}(\mathrm{i})$ in Equation (1) and Equation (2) with fbase(i). The final baseline curve is obtained by replacing $\mathrm{f}(\mathrm{i})$ in Equation (1) and Equation (2) with fbase2(i). The spectrum after background correction is obtained by subtracting the final baseline curve from the initial spectrum. In addition, in order to reduce the influence of noise, SavitzkyGolay filter is performed on the spectrum after background correction. In this experiment, the window width of Savitzky-Golay filter is set as 5 points (0.4 nm) and Polynomial number is set as 2 .

$$
\begin{gather*}
f \text { Base }(i)= \begin{cases}f(i) & f(i)<d A \operatorname{ver}(i) \\
d A v e r(i) f(i)>d A \operatorname{ver}(i)\end{cases} \tag{1}\\
d A \operatorname{ver}(i)=\left(\sum_{j=-d}^{j=d} f(i+j)\right) /(2 * d+1) \tag{2}
\end{gather*}
$$

3. Detail procedure of the improved peak volume algorithm

In this article, an improved peak volume algorithm is proposed to solve this problem, where start time point and end time point of the spectrum at each concentration are determined according to a unified judgment criteria. First, the peak area at each time point is calculated, as shown in Equation 1. Then, find the maximum peak area and name its corresponding time point index $\mathrm{N}_{\text {max }}$. Subsequently, find the start time point $\mathrm{N}_{\text {start }}$ and end time point $\mathrm{N}_{\text {end }}$ as shown in the flow chart 1 and 2. The unified judgment criteria was as shown in inequation (1) and (2). Starting from the time point index $\mathrm{N}_{\max }$, the peak area is accumulated along the time axis to both sides point by point until the addition of the peak area at a certain time point makes the increment rate of the accumulated peak area value less than the set volume coefficient. The volume coefficient in inequation (1) and (2) has been optimized. It was found that R^{2} of the standard curve was poor in the range of $1-10 \mu \mathrm{~g} \mathrm{~L} \mathrm{~L}^{-1}$ when volume coefficient is lower than 0.015 , possibly because more noise signal was introduced at small intensity, and when volume coefficient is higher than 0.015 , the linear range becomes narrower, possibly because the larger intensity loss at higher concentration. As a result, volume coefficient of 0.015 was selected, which can automatically adopt appropriate time width at different concentration. After determining the start time point and end time point, peak volume can be calculated according to Equation 2.

$$
\begin{equation*}
I_{\text {area }}(n \times \Delta t)=\sum_{\lambda=\lambda_{\text {start }}}^{\lambda=\lambda_{\text {end }}} I_{n}(\lambda) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
I_{\text {volume }}=\sum_{n=N_{\text {start }}}^{n=N_{\text {end }}} I_{\text {area }}(n \times \Delta t) \tag{2}
\end{equation*}
$$

63 spectrum to reduce errors caused by baseline fluctuation before the comparison.

Fig.S2 Flow chart of determining start time point.

Parameters	Values
Incident RF power	1150 W
Sampling depth	120 mm
Nebulizer Ar gas flow rate	$0.8 \mathrm{~L} \mathrm{~min}{ }^{-1}$
Cooling Ar gas flow rate	$14 \mathrm{~L} \mathrm{~min}^{-1}$
Auxiliary Ar gas flow rate	$1.2 \mathrm{~L} \mathrm{~min}^{-1}$
Peristaltic pump rate	30 rpm
Dwell time	10 ms
Isotopes	${ }^{75} \mathrm{As}$
Internal standard isotopes	${ }^{72} \mathrm{Ge}$

Fig.S3 Flow chart of determining end time point.
4. The operational parameters of ICP-MS

Table S1 Operational parameters of ICP-MS
5. Optimization of H_{2} in $\mathrm{Ar} / \mathrm{H}_{2}$ mixture
experiments.
 that in $2 \% \mathrm{H}_{2}$ set at 100 , respectively.
H_{2} has been validated as a crucial gas for the releasing of As from DBD's inner surface, which might supply hydrogen radical to promote the atomization of As. Ar is usually employed as the working gas of microplasmas as it could form stable and stronger plasma. Accordingly, a mixture gas of Ar and H_{2} is employed as the working gas of release step in this work. The effect of the proportion of H_{2} in the mixture of $\mathrm{Ar} / \mathrm{H}_{2}$ on the analytical signals of As was investigated. As shown in Fig.S4, As intensity decreases with the increasing H_{2} proportion because higher amount of H_{2} would consume the energy of DBD plasma and cause a decrease of its excitation capability. However, sever tailing of As releasing intensity could be observed when the proportion of H_{2} in $\mathrm{Ar} / \mathrm{H}_{2}$ is below 5%. Therefore, the proportion of 5% was selected for all subsequent

Fig. S4 Dependence of As and Sb intensities on percentage of H_{2} in $\mathrm{Ar} / \mathrm{H}_{2}$. The intensities are normalized with

