Supporting Information

Sensitive detection of p53 DNA based on spatially confined fluorescence resonance energy transfer and multivalent assembly of branched DNA

Yeling Liu^a, Xia Sun^a, Hui Yuan^a, Bingxin Liu^a, Bingqian Zhou^a, Xuening Chen^b, Xia Li^{a*}, Qingwang Xue^{a*}

^aDepartment of Chemistry, Liaocheng University, Liaocheng 252059, China ^bCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, China

Correspondence: lixia@lcu.edu.cn; xueqingwang1983@163.com (Q-W. X)

Table of Contents

Table S1. Sequences of oligonucleotides used in this study
Table S2. Detection of p53 gene in spiked cell lysis by the proposed sensing
system4
Fig. S1. The secondary structure of HP5
Fig.S2. Gel electrophoresis characterization of the proposed X-shaped branched-
DNA6
Fig. S3. TEM image of the proposed SC-FRET probes
7
Fig. S4. Effect of the concentration of KFP (A); the concentration of Nb.BbvCI (B);
the SDA reaction time (C); the volume of X-shaped branched-DNA (D) on the
fluorescence intensity of the sensing system
Table S3. Comparison of different methods for p53 DNA detection

Name	Sequence (5'-3')
p53 DNA	TCA TCA CAC TGG AAG ACT C
IID	GCC AAT GTT CAG ATG TTT TTT TTT TTT CTC ATA CCA CTC CT <u>C</u>
HP	AGC GAG TCT TCC AGT GTG ATG A
	TAMRA - TTT TCT CAT ACC ACT GCT CAT CCA TGC CTA GAC TGG
\$\$1	CGATAA GTA GCC AGC
	TAMRA - TTT TCT CAT ACC ACT GCT CAG CAA GCG TTA TGC GTC
ss2	TAG GCA TGG ATG AGC
	TAMRA - TTT TCT CAT ACC ACT GCT CTG GTA TGC ATG TCG GCA
ss3	TAA CGC TTG CTG AGC
	TAMRA - TTT TCT CAT ACC ACT GCT GGC TAC TTA TCG CCA CGA
ss4	CAT GCA TAC CAG AGC
	CGA CCG ATG AAT AGC GGT CAG ATC CGT ACC TAC TCG GCC
ss5	AAT GTT CAG ATG - FAM
_	CGA GTA GGT ACG GAT CTG CGT ATT GCG AAC GAC TCG GCC
ss6	AAT GTT CAG ATG - FAM
	CGA GTC GTT CGC AAT ACG GCT GTA CGT ATG GTC TCG GCC
ss7	AAT GTT CAG ATG - FAM
	CGA GAC CAT ACG TAC AGC ACC GCT ATT CAT CGG TCG GCC
ss8	AAT GTT CAG ATG – FAM
T1	TCA TCA CAC TGG AAG AAT C
T2	TCA TCA CAC TGG AAG GAT C
Tn	GGT CTC TTG ATA GCA CTC G

Table S1 Sequences of oligonucleotides used in this study

		sensing system		
sample	Added	Measured	Decessory/0/	
	p53 DNA / nM	p53 DNA / nM	Recovery/%	KSD/%
1	1.0	1.022	102.2	5.98
2	10	11.03	101.3	5.57
3	100	97.1	97.1	5.46

Table S2. Detection of p53 gene in spiked cell lysis samples by the proposed

Fig. S1. The secondary structure of HP

Fig. S2. Gel electrophoresis characterization of the proposed X-shaped branched-DNA; Lane 1: ss1 ; Lane 2: ss1 + ss2 ; Lane 3: ss1 + ss2 + ss3 ; Lane 4: ss1 + ss2 + ss3 + ss4 ; (B) Lane 1: ss5 ; Lane 2: ss5 + ss6 ; Lane 3: ss5 + ss6 + ss7 ; Lane 4: ss5 + ss6 + ss7 + ss8

Fig. S3 TEM image of the proposed SC-FRET probes: HP, 250 nM; Nb.BvCI, 2.5 U; KFP, 1U; X-FAM, 250 nM; X-TAMRA, 250 nM

Fig. S4. Effect of the concentration of KFP (A); the concentration of Nb.BbvCI (B); the SDA reaction time (C); the volume of X-shaped branched-DNA (X-FAM , X-TAMRA) (D) on the fluorescence intensity of the sensing system.

signal readout	amplification	LOD	linear range	selectivity	Ref.
Quartz crystal microbalance	_	0.3 nM	not given	good	1
Electrochemistry	_	230 pM	1.0-95 nM,	good	2
Colorimetric	+	1 pM	1-100 pM	good	3
Electrochemistry	++	0.3 fM	1 fM -1000 pM	good	4
Electrochemistry	+	0.5 fM	1 fM -1 nM	good	5
Electrochemistry	++	0.45 fM	1 fM -100 pM	good	6
Electrochemiluminescence	++	0.02 fM.	0.05-100 fM	good	7
SERS	++	21 aM,	not given	good	8
Fluorescence	+	2.5 pM	10 pM -100 nM	good	9
Fluorescence	+	80 pM	not given	good	10
Fluorescence	_	0.26 pM	0.001 -100 nM	good	11
FRET	÷	0.01394 pM	0.1-500 pM.	good	Our work

Table S3. Comparison of different methods for p53 DNA detection.

References

- [1] Wang D, Tang W, Wu X, et al. Highly selective detection of single-nucleotide polymorphisms using a quartz crystal microbalance biosensor based on the toehold-mediated strand displacement reaction. *Analytical Chemistry*, **2012**, 84 (16): 7008-7014.
- [2] Dai Z, Cai T, Zhu W, et al. Simultaneous profiling of multiple gene-methylation loci by electrochemical methylation-specific ligase detection reaction. *Chemical Communications*, 2013, 49 (19): 1939-1941.
- [3] Lin Z, Yang W, Zhang G, et al. An ultrasensitive colorimeter assay strategy for p53 mutation assisted by nicking endonuclease signal amplification. *Chemical Communications*, 2011, 47 (32): 9069-9071.
- [4] Wang Z, Xia J, Song D, et al. Lable-free quadruple signal amplification strategy for sensitive electrochemical p53 gene biosensing. *Biosensors & Bioelectronics*, **2016**, 77: 157-163.
- [5] Qiu L, Qiu L, Wu Z S, et al. Cooperative amplification-based electrochemical sensor for the zeptomole detection of nucleic acids. *Analytical Chemistry*, 2013, 85 (17): 8225-8231.
- [6] Yang C, Dou B, Yang J, et al. Cross-triggered and cascaded recycling amplification for ultrasensitive electrochemical sensing of the mutant human p53 gene. *Chemical Communications*, 2016, 52 (56): 8707-8710.
- [7] Yang L, Tao Y, Yue G, et al. Highly selective and sensitive electrochemiluminescence biosensor for p53 DNA sequence based on nicking endonuclease assisted target recycling and hyperbranched rolling circle amplification. *Analytical Chemistry*, **2016**, 88 (10): 5097-5103.
- [8] Ye S, Wu Y, Zhang W, et al. A sensitive SERS assay for detecting proteins and nucleic acids using a triple-helix molecular switch for cascade signal amplification. *Chemical Communications*, 2014, 50 (66): 9409-9412.
- [9] Xu J, Wu Z S, Li H, et al. Dual-cyclical nucleic acid strand-displacement polymerization based signal amplification system for highly sensitive determination of p53 gene. *Biosensors & Bioelectronics*, 2016, 86: 1024-1030.
- [10] Qiu L P, Wu Z S, Shen G L, et al. Highly sensitive and selective bifunctional oligonucleotide probe for homogeneous parallel fluorescence detection of protein and nucleotide sequence.

Analytical Chemistry, 2011, 83 (8): 3050-3057.

[11] Wang W, Zhao Y, Jin Y. Gold-nanorod-based colorimetric and fluorescent approach for sensitive and specific assay of disease-related gene and mutation. ACS Applied Materials Interfaces, 2013, 5 (22): 11741-11746.