Supporting information

Thiol-mediated etching of gold nanorods as a neoteric strategy for roomtemperature and multicolor detection of nitrite and nitrate

Marzieh Sepahvand,^a Forough Ghasemi,^{b,*} Hossein Mir Seyed Hosseini^{a,*}

^aDepartment of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

^bDepartment of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, 3135933151, Iran

*Corresponding authors:

Forough Ghasemi; email: <u>forough.ghasemi@abrii.ac.ir</u> Hossein Mir Seyed Hosseini; email: <u>mirseyed@ut.ac.ir</u>

Table of content

Page

S3

Table S1. Characteristics of water, soil, salami, and sausage samples used for nitrite assay

Fig. S1. The linear relationship between the response (A_{540nm}) from Griess assay and the concentration of (a) nitrite and (b) nitrate (after reduction step) **S4**

Fig. S2. Intensity size distribution of the developed probe in the absence and presence of nitrite (40 µmol L⁻¹) S5

Fig. S3. The effect of pH on the AuNRs etching in the presence of 5.0 mmol L⁻¹ of glycine-HCl buffer at different pHs, 150 µmol L⁻¹ of nitrite ion, 40 mmol L⁻¹ of CTAB, and 25 mmol L⁻¹ of thiourea at time 30 min **S6**

Fig. S4. (a) Absorbance spectra of the probe in the presence of different concentrations of nitrate (0.5-3.0 mmol L^{-1}). (b) The linear relationship between the response (S₀-S) and the concentration of nitrate. (c) The images of the probe in the presence of different concentrations of nitrite at the top of a white 96-well plate **S7**

Fig. S5. Intensity size distribution of the developed probe in the absence and presence of nitrate (2.0 mmol L⁻¹) **S8** Table S2. Comparison of reported colorimetric methods based on AuNPs for the detection of **S9** nitrite and nitrate S10

References

S2

Sample	EC (ds m ⁻¹)	рН	Sand (%)	Silt (%)	Clay (%)	Soil texture	
Campus water	0.29	7.50	-	-	-	-	
Tap water	0.75	7.40	-	-	-	-	
Well water (1)	0.37	7.80	-	-	-	-	
Well water (2)	0.48	7.80	-	-	-	-	
Well water (3)	0.41	7.60	-	-	-	-	
Soil (tomato)	1.6	8.37	25.5	39.1	35.4	Clay loam	
Soil (pepper)	1.1	8.42	29.5	35.3	35.2	Clay loam	
Soil (onion)	1.2	8.40	26.5	37.3	36.2	Clay loam	
Soil (apple)	1.52	8.41	36.5	36.3	27.2	Clay loam/Loam	
Soil (maize)	2.73	8.18	30.0	50.0	20.0	Silt loam/Loam	
Salami	1.62	5.71	-	-	-	-	
Sausage	1.53	5.70	-	-	-	-	

Table S1. Characteristics of water, soil, salami, and sausage samples used for nitrite assay

Fig. S1. The linear relationship between the response (A_{540nm}) from Griess assay and the concentration of (a) nitrite and (b) nitrate (after reduction step)

Fig. S2. Intensity size distribution of the developed probe in the absence and presence of nitrite (40 μ mol L⁻¹)

Fig. S3. The effect of pH on the AuNRs etching in the presence of 5.0 mmol L⁻¹ of glycine-HCl buffer at different pHs, 150 μmol L⁻¹ of nitrite ion, 40 mmol L⁻¹ of CTAB, and 25 mmol L⁻¹ of thiourea at time 30 min

Fig. S4. (a) Absorbance spectra of the probe in the presence of different concentrations of nitrate (0.5-3.0 mmol L⁻¹). (b) The linear relationship between the response (S₀-S) and the concentration of nitrate. (c) The images of the probe in the presence of different concentrations of nitrite at the top of a white 96-well plate

Fig. S5. Intensity size distribution of the developed probe in the absence and presence of nitrate (2.0 mmol L⁻¹)

Table S2. Comparison of reported colorimetric methods based on AuNPs for the detection of nitrite and nitrate

Plasmonic NPs	Shape of NPs	Mechanism	Temperature (°C)	Real sample	Nitrate detection	Ref.
Aniline- and naphthalene- modified AuNPs	Sphere	Aggregation	95	Drinking water	~	[1]
4-Aminothiophenol- modified AuNRs	Rod	Aggregation	95	Drinking water	×	[2]
Citrate-capped AuNPs/ Phenylenediamine	Sphere	Anti-aggregation	37	Tap water	×	[3]
Citrate-capped AuNPs/ 4- Aminothiophenol	Sphere	Anti-aggregation	Room temperature	Under ground and tap water	×	[4]
AuNRs	Rod	Etching	55 Drinking water		×	[5]
AuNRs	Rod	Etching	Room temperature	Tap and well water, soil (pepper, onion, apple, maize), salami, and sausage	√	This work

References

1. W. L. Daniel, M. S. Han, J.-S. Lee and C. A. Mirkin, *Journal of the American Chemical Society*, 2009, **131**, 6362-6363.

- 2. N. Xiao and C. Yu, Analytical chemistry, 2010, 82, 3659-3663.
- 3. J. Zhang, C. Yang, X. Wang and X. Yang, *Analyst*, 2012, **137**, 3286-3292.
- 4. Y. Ye, Y. Guo, Y. Yue and Y. Zhang, *Analytical Methods*, 2015, **7**, 4090-4096.
- 5. Z. Chen, Z. Zhang, C. Qu, D. Pan and L. Chen, *Analyst*, 2012, **137**, 5197-5200.