Supporting information

Simple, Low-Cost and Sensitive Electrochemical Sensing of Antineoplastic Drug Amethopterin Based on Nanocarbon Black Modified Electrode

Xiaoqing Lin^{1, 2}, Liangming Zhang^{1, 2}, Mingshu Tu^{1, 2}, XiaoqingYin^{2, 3}, Liqing Cai ^{1, 2}, Yi Huang^{1,2,4,5*}

 ¹ Provincial Clinical College, Fujian Medical University, Fuzhou 350001, China
² Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou 350001, China
³Integrated Chinese and Western Medicine College, Fujian University of Traditional Chinese Medicine, Fuzhou 350001, China
⁴Central Laboratory, Fujian Provincial Hospital, Fuzhou 350001, China
⁵ Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou 350001, China

*To whom correspondence should be addressed. E-mail: hyi8070@yeah.net (Yi Huang)

Figure S2. The DPV peak current value of 2.0 μ M ATP measured in 0.1 M PBS (pH 6.5) (A) at independently fabricated NCB/GCE and (B) with different storage times.

Modified electrodes	Linear range [µM]	LOD [µM]	Reference
Surfactant modified carbon nanotube paste electrode	0.2-7.0	0.035	1
Functionalized carbon nanotube paste electrodes	0.01-1.5	0.0029	2
Biopolymers blend films/indium tin oxide	1.5-50.0	0.595	3
Ce-ZnO/GCE	0.01-500.0	0.0063	4
N-doped hollow nanocarbon sphere/GCE	0.05-14.0	0.01	5
Porous graphene-carbon nanotube/GCE	0.7-10.0	0.07	6
Carbon black/cooper nanoparticles/nafion/GCE	2.2-25.0	0.09	7
CoFe2O4/reduced graphene oxide/ionic liquid/GCE	0.1-7.5	0.02	8
NCB/GCE	0.01-10.0	0.004	This work

Table S1. Comparison of different modified electrodes for the electrochemical determination of ATP.

References

- 1 J.G. Manjunatha, Journal of Electrochemical Science and Engineering, 2017, 7, 39-49.
- 2 S. Kummari, V.S. Kumar, M. Satyanarayana, and K.V. Gobi, *Microchemical Journal*, 2019, 148, 626-633.
- 3 H.R.S. Lima, E. Airton de Oliveira Farias, P.R.S. Teixeira, C. Eiras, and L.C.C. Nunes, *Journal of Solid State Electrochemistry*, 2019, 23, 3153-3164.
- 4 N. Jandaghi, S. Jahani, M.M. Foroughi, M. Kazemipour, and M. Ansari, *Mikrochimica Acta*, 2020, 187, 24.
- 5 J. Li, D. Chen, T. Zhang, and G. Chen, Analytical Methods, 2021, 13, 117-123.
- 6 E. Asadian, S. Shahrokhian, A. Iraji Zad, and F. Ghorbani-Bidkorbeh, *Sensors and Actuators B: Chemical*, 2017, 239, 617-627.
- 7 E.M. Materon, A. Wong, O. Fatibello-Filho, and R.C. Faria, *Journal of Electroanalytical Chemistry*, 2018, 827, 64-72.
- 8 A.A. Ensafi, F. Rezaloo, and B. Rezaei, *Journal of the Taiwan Institute of Chemical Engineers*, 2017, 78, 45-50.

<u>**Table S2**</u>. The results of recovery analysis for detecting ATP in blood serum sample based on NCB/GCE and their comparison with HPLC technique.

Samples	Added [µM]	Found [µM]	Recovery [%]	HPLC
a	1.0	0.95	95.0	0.95
b	4.0	4.16	104.0	4.10
c	8.0	7.83	97.88	7.76