1

Supplementary Information

Development of PANI/ Fe(NO₃)₂ Nanomaterial for Reactive Orange 16 (RO16) Dye Removal

Tanvir Arfin^{1,*} Dipti A. Bhaisare, and S.S Waghmare

Environmental Materials Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur-440020 India.

*Corresponding author.

E-mail address: tanvirarfin@ymail.com

¹Current address: Hyderabad Zonal Centre, CSIR-National Environmental Engineering

Research Institute (NEERI), IICT Campus, Tarnaka, Hyderabad, Telangana, 500007, India

Fig. S1 Molecular structure of RO16

Characteristics	Description
IUPAC Name	disodium (3Z)-6-acetamido-4-oxo-3-[[4-(2-
	sulfonatooxyethylsulfonyl)phenyl]hydrazinylidene]naphthalene-
	2-sulfonate
Common Name	Remazol brilliant orange 3R
CAS number	12225-83-1
Color index number	17757
Ionization	Reactive
λmax (nm)	494 nm
Molecular weight	617.54
(g/mol)	
Dye content	$\geq 70\%$
Chemical formula	$C_{20}H_{17}N_3Na_2O_{11}S_3$
H-Bond Donor	2
H-Bond Acceptor	13

Fig.S2. Calibration curve of absorbance against concentration of RO16 dye

Table S2: Linear and non-linear isotherm equation

Туре	Linear Form	Plot	Ref.
Langmuir –I (Hanes- Woolf Linearization)	$\frac{C_e}{q_e} = \frac{1}{q_m}C_e + \frac{1}{K_L q_m}$	$\frac{C_e}{q_e}$ vs. C_e	1
Langmuir –II (Lineweaver-Burk Linearization)	$\frac{1}{q_e} = \frac{1}{q_m} + \frac{1}{q_m K_L} \times \frac{1}{C_e}$	$\frac{1}{q_e}$ vs. $\frac{1}{C_e}$	1
Langmuir – III (Eadie- Hoffsiee Linearization)	$q_e = q_m - \frac{1}{K_L} \times \frac{q_e}{C_e}$	q_e vs. $\frac{q_e}{C_e}$	1
Langmuir –IV (Scatchard Linearization)	$\frac{q_e}{C_e} = q_m K_L - K_L q_e$	$\frac{q_e}{C_e}$ vs. q_e	1
Langmuir - V	$\frac{1}{C_e} = q_m K_L \times \frac{1}{q_e} - K_L$	$\frac{1}{C_e}$ vs. $\frac{1}{q_e}$	1
Langmuir-VI	$C_e = q_m \times \frac{C_e}{q_e} - \frac{1}{K_L}$	C_e vs. $\frac{C_e}{q_e}$	1
Freundlich	$\log q_e = \log K_F + \frac{1}{n} \log C_e$	$\log q_e$ vs. $\log C_e$	2
Temkin	$q_e = \frac{RT}{b_T} \ln A_T + \left(\frac{RT}{b_T}\right) \ln C_e$	$q_e vs. \ln C_e$	2
Dubinin-Radushkevich	$\ln q_e = \ln q_{DR} - K_{DR} \varepsilon^2$	$\ln q_e vs. \varepsilon^2$	2
Harkins-Jura	$\frac{1}{q_e^2} = \frac{B_H}{A_H} - \left(\frac{1}{A_H}\right) \log C_e$	$\frac{1}{q_e^2} vs. \log C_e$	2
Halsey	$\ln q_e = \left(\frac{1}{n_H}\right) \ln K_H - \left(\frac{1}{n_H}\right) \ln C_e$	$\ln q_e \text{ vs.} \ln C_e$	2

Elovich	$\ln\left(\frac{q_e}{C_e}\right) = \ln\left(K_E\right)(q_m) - \left(\frac{q_e}{q_m}\right)$	$\ln\left(\frac{q_e}{C_e}\right)$ vs. q_e	2
Jovanovic	$\ln q_e = \ln q_m - k_J C_e$	$\ln q_e vs. C_e$	2
Redlich-Peterson	$\ln\!\left(\frac{C_e}{q_e}\right) = \beta \ln C_e - \ln A$	$\ln\!\left(\frac{C_e}{q_e}\right) vs. \ln C_e$	2
Jossens	$\ln\!\left(\frac{C_e}{q_e}\right) = -\ln H + F q_e^p$	$\ln\left(\frac{C_e}{q_e}\right)$ vs. q_e^p	2

Table S3: List of error functions

Error	Abbreviations	Models		
functions				
Nonlinear chi- square test	χ^{2}	$\chi^{2} = \sum_{i=1}^{n} \frac{\left(q_{e,\exp} - q_{e,cal}\right)}{q_{e,\exp}}$	3	
Sum of squares of the errors	SSE/ ERRSQ	$SSE = \sum_{i=1}^{n} \left(q_{e, \exp} - q_{e, cal} \right)^{i}$	3	
Average relative error	ARE	$ARE = \frac{100}{n} \sum_{i=1}^{n} \left \frac{q_{e,\exp} - q_{e,cal}}{q_{e,\exp}} \right $	3	
Residual root mean square error	RMSE	$RMSE = \sqrt{\frac{1}{n-2}\sum_{i=1}^{n} \left(q_{e,\exp} - q_{e,cal}\right)}$	4	
Coefficient of determination	R ²	$R^{2} = \frac{\sum \left(q_{e,\exp} - \overline{q}_{e,cal}\right)}{\sum \left(q_{e,\exp} - \overline{q}_{e,cal}\right) + \sum \left(q_{e,\exp} - q_{e,cal}\right)}$	3	
Standard deviation of relative errors	SRE	$S_{RE} = \sqrt{\frac{\sum_{i=1}^{n} \left[(q_{e,exp} - q_{e,cal}) - ARE \right]^{2}}{n-1}}$	3	
Marquardt's percentage standard deviation	MPSD	$MPSD = 100 \sqrt{\frac{1}{n-p} \sum_{i=1}^{n} \left(\frac{q_{e,\exp} - q_{e,cal}}{q_{e,\exp}}\right)^2}$	3	
Normalized standard deviation	NSD	$NSD = \Delta q(\%) = 100 \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{q_{e, \exp} - q_{e, cal}}{q_{e, \exp}}\right)^{2}}$	5	

 $\overline{q_{e,exp}(mg \ g^{-1})}$: Value obtained from the experiment, $q_{e,cal}(mg \ g^{-1})$: Calculated value from the isotherm for corresponding, $q_{e,exp}\overline{q}_{cal}(mg \ g^{-1})$: Mean of $q_{e,cal}$, n: Number of experiment

Table S4: Kinetics models of adsorption	
---	--

Туре	Linear Form	Plot	Ref.
Pseudo-	$\ln(q_e - q_t) = \ln(q_e) - k_1 t$	$\ln(q_e - q_t) vs. t$	6
first			
order			
Type-1	t (1) (1)	$\frac{t}{t}$ vs. t	6
pseudo-	$\frac{1}{a} = \left \frac{1}{a} \right t + \left \frac{1}{k} \right \frac{1}{a^2} \right $	$\frac{-}{q_{\star}}$ vs. i	
second	$\mathbf{q}_t (\mathbf{q}_e) (\mathbf{k}_2 \mathbf{q}_e)$	11	
order			
Type-II	1 (1)(1)(1)	1 1	6
pseudo-	$\frac{1}{a} = \left \frac{1}{b a^2} \right \left \frac{1}{b} \right + \left \frac{1}{a} \right $	$\frac{1}{a}$ vs. $\frac{1}{t}$	
second	$q_t (\kappa_2 q_e)(l) (q_e)$	21	
order			
Type-III	$\begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} a \end{pmatrix}$	q_t	6
pseudo-	$q_t = -\left \frac{1}{h_e} \right \left \frac{q_t}{h_e} \right + q_e$	$q_t vs. = t$	
second	$(\kappa_2 q_e) (l)$	·	
order			
Type-IV	q_t $l = 1 + 2$	q_t	6
pseudo-	$\frac{d_{e}}{d_{e}} = -\kappa_{2}q_{e}q_{t} + \kappa_{2}q_{e}$	$\frac{1}{t}$ vs. q_t	
second	L L	·	
order			
Type-V	1 (1) (1)	1 (1)	6
pseudo-	$\frac{1}{4} = k_2 q_e^2 \left[\frac{1}{2} \left[-k_2 q_e^2 \right] \frac{1}{2} \right]$	$\frac{1}{4}$ vs. $\frac{1}{2}$	
second	ι (q_t) (q_e)	$\iota (q_t)$	

order

Type-VI	$\frac{1}{1} - \frac{1}{1} + k t$	$\frac{1}{1}$ ys t	6
pseudo-	$\frac{1}{q_e-q_t} = \frac{1}{q_e} + \kappa_2 i$	$\frac{1}{q_e-q_t}$ vs. t	
second			
order	_	_	
Intra-	$q_t = k_i \sqrt{t + C_i}$	q_t vs. \sqrt{t}	7
particle			
diffusion			
Elovich	$q_t = A + B \ln t$	q_t vs. ln t	7
Bangham	$\begin{bmatrix} \begin{pmatrix} C \end{pmatrix} \end{bmatrix} \begin{pmatrix} k m \end{pmatrix}$		7
C	$\log \log \left \frac{C_0}{\sigma} \right = \log \left \frac{\kappa_0 m}{\sigma 200 M} \right + \sigma \log t$	$\log \log \frac{C_0}{C} = \log t$	
	$\begin{bmatrix} (C_0 - q_t m) \end{bmatrix} \qquad (2.303V)$	$\begin{bmatrix} C_0 - q_t m \end{bmatrix}$	
Boyd	(a, a)	B_t vs. t	7
	$B_t = -0.4977 - \ln \left 1 - \frac{q_t}{q} \right $	Ľ	
	(q_e)		

Study of adsorption thermodynamics

During environmental engineering, entropy and energy are considered adequately for accurately determining the continuous process occurring rapidly. The thermodynamic studies are sufficiently taken into account for scientifically investigating the adsorption process's economic feasibility and accurately estimating exothermic and endothermic nature. Excellent result of thermodynamic parameters acts as a critical indicator for practical use.

Table S5: Thermodynamic relationship for the adsorption of RO16 onto PANI/Fe(NO₃)₂

Thermodynamic relations	$\ln K_D = \frac{\Delta S^{\circ}}{R} + \frac{-\Delta H^{\circ}}{RT}$ (Van't Hoff equation)	(7)
	$K_D = \frac{q_e}{C_e}$	(8)
	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$	(9)
	$\Delta G^{\circ} = -RT \ln K_D$	(10)

Fig.S3 Adsorption isotherms for the adsorption of dyes on: PANI/ Fe(NO₃)₂ (a) Langmuir –I, (b) Langmuir –II, (c) Langmuir –III, (d) Langmuir – IV, (e) Langmuir –V, (f) Langmuir –VI, (g) Freundlich, (h) Temkin, (i) Dubinin-Radushkevich, (j) Harkins-Jura, (k) Halsey, (l) Elovich, (m) Jovanovich, (n) Redlich-Peterson, (o) Jossens. Reaction conditions: (the initial concentration, contact time, pH, volume of solution, amount of adsorbent and temperature was 100 mg/L, 80 min, 4, 100 mL, 70 mg and 298K respectively).

Fig.S4. Effect of initial concentration on the separation factor with: PANI/ Fe(NO₃)₂ (pH, volume of solution and amount of adsorbent was 4, 100 mL, and 70 mg, respectively).

Table S6: Values of twelve different error analyses of isotherm models for RO16 adsorption onto PANI/ $Fe(NO_3)_2$ nanocomposite. Reaction conditions: (the initial concentration, contact time, pH, volume of solution, amount of adsorbent and temperature was 100 mg/L, 80 min, 4, 100 mL, 70 mg and 298K respectively).

Isotherms	Error											
	SSE/	χ^2	R ²	ARE	RMSE	HYBRID	MPSD	SAE	EABS	ARSE	SRE	NSD
	ERRSQ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~										
Langmuir –I	8.619E-06	1.07E-04	0.9955	0.1759	1.467E-03	0.2199	1.9805	7E-05	1.4E-05	0.0190	0.0467	1.9085
Langmuir –II	1.18E-08	3.73E-06	0.9988	0.0642	5.431E-05	0.0803	1.7543	8.673E-19	1.734E-19	0.0175	0.0283	1.7543
Langmuir –III	339.3743	1.065	0.9877	0.0053	9.2110	0.0067	2.9489	0.4631	0.0926	0.0290	0.3401	2.9489
Langmuir –IV	1.4185	0.1197	0.9877	0.1029	0.5955	0.1286	5.1296	0.0213	0.0042	0.0512	0.0636	5.1296
Langmuir –V	1.376E-05	0.0003	0.9988	0.3601	0.0018	0.4501	5.3889	0.0001	3.2E-05	0.0538	0.0673	5.3889
Langmuir –VI	0.0015	0.0006	0.9955	0.0154	0.0199	0.0193	0.8701	0.0008	0.0001	0.0087	0.0029	0.8701
Freundlich	8.611E-06	0.0001	0.9823	0.1759	0.0014	0.2199	1.9805	7E-05	1.4E-05	0.0190	0.0467	1.9085
Temkin	97.1229	0.3259	0.9964	0.0766	4.9275	0.0958	1.7688	0.4435	0.0887	0.0176	0.3344	1.7688
Dubinin-	0.0662	0.0119	0.8631	0.0318	0.1286	0.0398	2.3184	0.0018	0.0003	0.0231	0.0291	2.3184
Radushkevich												
Harkins-Jura	2.133E-10	1.146E-05	0.8104	4.5932	7.303E-06	5.7415	49.4243	8.464E-08	1.692E-08	0.4942	0.2396	49.4243
Halsey	0.0084	0.0015	0.9823	0.0155	0.0460	0.0194	0.8700	0.0018	0.0003	0.0087	0.0166	0.8700
Elovich	0.0063	0.0021	0.9856	0.0149	0.0397	0.0186	1.3737	0.0013	0.0002	0.0137	0.0227	1.3737
Jovanovic	0.0838	0.0159	0.8264	0.07319	0.1448	0.0914	2.7558	0.0019	0.0003	0.0275	0.0208	2.7558
Redlich-	0.0087	-0.0030	0.9805	0.0246	0.0466	0.0307	1.6196	0.0018	0.0003	0.0161	0.0119	1.6196
Peterson												
Jossens	0.0063	-0.0021	0.9856	0.0149	0.0397	0.0186	1.3737	0.0013	0.0002	0.0137	0.0120	1.3737

Fig.S5 Adsorption kinetics for the adsorption of dyes on: PANI/ Fe(NO₃)₂ (a) Pseudo-first order, (b) Type-I pseudo-second order, (c) Type-II pseudo-second order, (d) Type-III pseudo-second order, (e) Type-IV pseudo-second order, (f) Type-V pseudo-second order, (g) Type-VI pseudo-second order, (h) Intra-particle diffusion, (i) Elovich, (j) Bangham, (k) Boyd. Reaction conditions: (the initial concentration, contact time, pH, volume of solution, amount of adsorbent and temperature was 100 mg/L, (10-80) min, 4, 100 mL, 70 mg and 298K respectively).

Fig.S6 PSO kinetics obtained by the nonlinear method

Fig.S7 (a) Arrhenius plot for the activation energy and (b) Van't Hoff regression (thermodynamics) of adsorption of RO16 dye onto PANI/ $Fe(NO_3)_2$. (the initial concentration, contact time, volume of solution and amount of adsorbent was 100 mg/L, 80 min, 100 mL and 70 mg, respectively).

Fig.S8 (a) Proposed mechanism for the adsorption of RO16 onto PANI/ $Fe(NO_3)_2$ surface. =N, -NH, and -OH representing the functional groups present onto the PANI/ $Fe(NO_3)_2$ composite. and (b) Electrostatic interaction and repulsion.

Fig.S9 Cycles of reuse (Adsorption/desorption) on the removal efficiency with PANI/Fe(NO₃)₂ (the initial concentration, pH, contact time, volume of solution and amount of adsorbent was 100 mg/L, 4, 80 min, 100 mL, and 70 mg, respectively).

Water Quality Parameters	Units	Water Sample					
-		Tap water	Raw water	Waste water			
pН		7.00	6.20	7.70			
$\overline{C}_{Ca^{2+}}$	$(mg L^{-1})$	12.8	54.3	12.5			
$C_{_{Mg^{^{2+}}}}$	$(mg L^{-1})$	1.8	17.7	3.9			
$C_{_{Na^+}}$	$(mg L^{-1})$	21.5	186.5	47.5			
C_{K^+}	$(mg L^{-1})$	2.3	20.2	4.7			

Table S7: The water quality parameters of different water samples

Fig.S10 Adsorption removal of RO16 dye from real water samples' PANI/ Fe(NO₃)₂ (the initial concentration, pH, contact time, volume of solution and amount of adsorbent was 10, 30, 50, 100 mg/L, 4, 80 min, 100 mL, and 70 mg, respectively).

Notes and references

- 1. O. Hamdaoui, F. Saoudi, M. Chiha and E. Naffrechoux, *Chem. Eng. J.*, 2008, 143, 73-84.
- 2. J. Wang and X. Guo, Chemosphere, 2020, **258**, 127270
- 3. K.Y. Foo and B.H. Hameed, *Chem. Eng. J.*, 2010, **156**, 2-10.
- 4. G-N. Moroi, E. Avram and L. Bulgariu, *Water Air Soil Pollut.*, 2016, 227, 260.
- 5. M.A. Hossain, H.H. Ngo and W. Guo, *Journal of Water Sustainability*., 2013, **3**, 223-237.
- 6. Y.-T. Huang, L.-C. Lee and M.-C. Shih, *International Journal of Scientific and Research Publications.*, 2018, **8**, 509-515.
- 7. H. Grabi, F. Derridj, W. Lemlikchi and E. Guenin, Sci. Rep., 2021, 11, 9705