Supplementary Information

Determination of ammonium in natural water using a quinoline-

based o-dialdehyde fluorescent reagent with visible excitation

wavelength

Xuejia Chen, Tingkai Xiong, Jin Xu, Yan Li, Min Zhang*, Ying Liang*

School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin,

Guangxi, 541004, China

* Corresponding authors.

Email address:

liangyi0774@guet.edu.cn (Y. Liang);

zhangmin@guet.edu.cn (M. Zhang);

(1) Characterization of compound 1 and 2 by gas chromatography - mass spectrometry

Fig. S1. Separation of Compound 1 by GC - MS

Fig. S2. Separation of Compound 2 by GC - MS

(2) Characterization of compound 3 and 4 and QDA by nuclear magnetic resonance (NMR) spectroscopy

The NMR results are shown below. Fig. S3 shows the NMR spectrum of compound 3. ¹H NMR (400 MHz, Chloroform-

d) δ 8.20 (s, 1H), 8.07 (d, J = 8.4 Hz, 1H), 7.84 (d, J = 9.0 Hz, 1H), 7.74 – 7.71 (m, 1H), 7.59-7.56 (m, 1H), 6.05 (s, 1H), 4.21 – 4.13 (m, 4H).

Fig. S3. The NMR spectrum of compound 3

Fig. S4 shows the NMR spectrum of compound 4.

¹H NMR (400 MHz, Chloroform-

d) δ 10.32 (s, 1H), 8.61 (s, 1H), 8.26 (d, J = 8.4 Hz, 1H), 7.94 (d, J = 8.2 Hz, 1H), 7.859-7.817 (m, 1H), 7.73-7.69 (m, 1H), 6.85 (s, 1H), 4.15 (s, 4H).

Fig. S4. The NMR spectrum of compound 4

Fig. S5 shows the NMR spectrum of quinoline-2,3-dialdehyde.

¹H NMR (400 MHz, Chloroform-*d*) δ 10.97 (s, 1H), 10.36 (s, 1H), 8.82 (s, 1H), 8.30 (d, J = 8.5 Hz, 1H), 8.04 (d, J = 8.2 Hz, 1H), 7.98-7.93 (m, 1H), 7.76-7.80 (m, 1H).

Fig. S5. The NMR spectrum of quinoline-2,3-dialdehyde

(3) Characterization of blank and QDA - NH₄⁺ - SO₃²⁻ product by HPLC-MS

HLB SPE cartridge was used to extract the QDA product from water, then the HLB cartridge was eluted with methanol and the eluted fraction was injected into a HPLC-MS. The corresponding HPLC-MS results of blank and product are as following:

Fig. S6. Characterization of blank (QDA - SO32-) by HPLC-MS

Fig. S7. Characterization of QDA - NH₄⁺ - SO₃²⁻ product by HPLC-MS

(4) Excitation and emission spectra of fluorescence products added with different concentrations of QDA

Fig. S8. Excitation (solid line) and emission (dash line) spectra of the fluorescence products with 0/0.05/0.1/0.15 g L⁻¹ added to the solution.

 $NH_4{}^+$ concentration: 1.5 $\mu mol \ L^{\text{-1}}; \ Na_2SO_3$ concentration: 0.0315 g $L^{\text{-1}}; \ Na_2B_4O_7$ buffer

concentration: 3.0 g L⁻¹; pH: 9.4. Reaction time: 50 min; Reaction temperature: 50° C

(5) Excitation and emission spectra of fluorescence products added with different concentrations of Na₂SO₃

Fig. S9. Excitation (solid line) and emission (dash line) spectra of the fluorescence products with 0/0.0315/0.063/0.0945 g L⁻¹ added to the solution.

 NH_4^+ concentration: 1.5 µmol L⁻¹; QDA concentration: 0.083 g L⁻¹; $Na_2B_4O_7$ buffer

concentration: 3.0 g L⁻¹; pH: 9.4. Reaction time: 50 min; Reaction temperature: 50°C.

(6) Emission spectra of fluorescence products which without calcium ions

Fig. S10. Emission spectra of the fluorescence products with 0/0.5/1/2/4 μmol L⁻¹ NH₄⁺. QDA concentration :0.083 g L⁻¹; Na₂SO₃ concentration: 0.0315 g L⁻¹; Na₂B₄O₇ buffer concentration: 3.0 g L⁻¹; pH: 9.4. Reaction time: 30 min; Reaction temperature: 40°C.

(7) Effects of inorganic ions on measuring ammonium solution

Ion	Concentration, μ mol L ⁻¹	Relative sensitivity to ammonium,
		%
NH4 ⁺	3	100.0 ± 2.5
Sr ²⁺	60	101.2 ± 0.8
	120	102.4 ± 0.5
Ni ²⁺	0.5	106.1 ± 1.4
	1.5	104.2 ± 0.3
Ba ²⁺	3	103.2 ± 0.5
	6	104.0 ± 0.1
Zn ²⁺	0.5	106.1 ± 4.0
	1.5	100.5 ± 1.2
Cd ²⁺	3	101.4 ± 0.2
	6	101.1 ± 0.5
Co ²⁺	0.5	103.8 ± 1.1
	1.5	82.1 ± 3.7
Mg ²⁺	100	103.6 ± 0.2
	2000	109.0 ± 0.4
	4000	114.5 ± 1.0
K+	50	98.1 ± 0.2
	100	98.6 ± 0.3
	200	100.4 ± 0.5
Fe ³⁺	30	101.2 ± 0.3
Na ⁺	30	101.9 ± 0.4
HPO ₄ ²⁻	30	101.3 ± 0.2
NO ₃ -	30	99.6 ± 0.8

Table S1 Effects of Inorganic ions on measuring ammonium solution (3 μ mol L⁻¹).

(8) Calibration curves of different times

Serial number	Calibration curve	R ²
1	$FI=(31.012\pm0.77)\ C_{NH4}^{+}+(13.879\pm2.79)$	0.995
2	$FI=(34.233 \pm 0.37) C_{NH4}^{+} + (11.409 \pm 0.31)$	0.9997
3	$FI=(30.671\pm0.37)\ C_{NH4}^{+}+(10.984\pm1.26)$	0.9994
4	$FI=(29.89 \pm 4.18) C_{NH4}^{+} + (16.52 \pm 1.24)$	0.9931
5	$FI=(31.501 \pm 0.88) C_{NH4}^{+} + (23.704 \pm 2.22)$	0.9977
6	$FI=(32.072 \pm 1.24) C_{NH4}^{+} + (16.996 \pm 3.13)$	0.9955
7	$FI=(29.611\pm0.10) C_{NH4}^{+}+(34.742\pm4.60)$	0.9944

Table S2 Calibration curves of different times