Supplementary Information

Engineered red blood cell membrane for sensitive and precise

electrochemical detection of salivary exosomes

Libang He^{a,*}, Meiying Shao^a, Jue Xu^a and Hao Chen^b

^a State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases

& Department of Cariology and Endodontics, West China Hospital of Stomatology & West

China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu

610041, Sichuan, China

^b School of Medicine, Tongji University, Shanghai 200072, China

DNA probes	Sequence (from 5' to 3')		
АР	Cholesterol-TTTTT-CACCCCACCTCGCTCCCGTGACACTAATGCTA		
AP1	TTTTTT-CACCCCACCTCGCTCCCGTGACACTAATGCTA		
Ap2	Cholesterol-TTTTT-AGAGGTAAGTTATTAGAGCAGA		
СР	FAM-TAGCATTAGTGTCACGGGA		
SP	SH-TTTTTT-CACCCCACCTCGCTCCCGTGACACTAATGCTA		
Control SP	SH-TTTTTT-CTGCTCTAATAACTTACC		
Cy5-aptamer	CACCCCACCTCGCTCCCGTGACACTAATGCTA-TTTTTT-Cy5		

Table S1 Sequences of DNA probes used in this work

Fig. S1 Representative optical and fluorescence images of RBC. For fluorescence imaging,

RBC was stained by membrane dye DiO. Scar bars, 5 $\mu m.$

Fig. S2 TEM image of CAL27 cell-derived exosomes.

Fig. S3 Flow cytometry analysis of CAL27 cell-derived exosomes captured by anti-CD63@MB

after Dio staining.

Fig. S4 Fluorescence images of CAL27 cell-derived exosomes captured by anti-CD63@MB

with Cy5-labelled CD63 aptamer incubation.

Fig. S5 UV-Vis spectrum of SP-AgNPs.

Fig. S6 LSV response of SP-AgNPs.

Fig. S7 Nyquist spectra of (a) engineered RBCM-coated electrode, and engineered RBCMcoated electrode with the treatment of (b) CAL27 cell-derived exosomes and (c) SP-AgNPs in sequence. Curve d corresponds to the Nyquist spectrum of engineered RBCM-coated electrode with the treatment of SP-AgNPs.

Fig. S8 SEM images of the engineered RBCM-coated electrode collected before and after treatment of SP-AgNPs: (A) in the absence of CAL27 cell-derived exosomes and (B) in the presence of CAL27 cell-derived exosomes.

Table S2 Comparison of recently reported methods for exosome detection

Method	Detection limit (particles/mL)	Linear range (particles/mL)	Reference
Electrochemical method using catalytic molecule machine	1.72×10 ⁴	1×10 ⁵ to 5×10 ⁷	[1]
Electrochemical method based on DNA amplification-responsive metal-	2.24×102	1×10 ³ to 1×10 ¹⁰	[2]
organic frameworks	3.34×10-		
Electrochemical method based on metal-organic framework-	5×10 ³	1.7×10 ⁴ to 3.4×10 ⁸	[3]
functionalized paper			
Electrochemical method using Zr-based metal-organic frameworks	7.83×10 ⁶	9.5×10 ⁶ to 1.9×10 ¹⁰	[4]
Fluorescence method based on combined aptamer recognition and	5×10 ²	1.6×10 ⁵ to 1.6×10 ⁸	[5]
quantum dot signal amplification			
Fluorescence method based on branched rolling circle amplification	4.27×10 ⁴	1×10 ⁵ to 1×10 ⁹	[6]
Electrochemical method using engineered RBCM	2.07×10 ²	5×10 ² to 1×10 ⁶	This work

References

1. Y. Cao, L. Li, B. Han, Y. Wang, Y. Dai and J. Zhao, *Biosens. Bioelectron.* 2019, **141**, 111397.

2. Y. Cao, Y. Wang, X. Yu, X. Jiang, G. Li and J. Zhao, *Biosens. Bioelectron.* 2020, **166**, 112452.

3. X. Liu, X. Gao, L. Yang, Y. Zhao and F. Li, Anal. Chem. 2021, 93, 11792-11799.

4. Z. Sun, L. Wang, S. Wu, Y. Pan, Y. Dong, S. Zhu, J. Yang, Y. Yin and G. Li, *Anal. Chem.* 2020, **92**, 3819-3826.

5. M. Wu, Z. Chen, Q. Xie, B. Xiao, G. Zhou, G. Chen and Z. Bian, *Biosens. Bioelectron.* 2021, **171**, 112733.

6. R. Huang, L. He, S. Li, H. Liu, L. Jin, Z. Chen, Y. Zhao, Z. Li, Y. Deng and N. He, Nanoscale 2020, 12, 2445-2451.

Fig. S9 LSV peak currents for detecting 1×10⁶ CAL27 cell-derived exosomes with the use of three different batches of (A) engineered RBCM-coated electrodes and (B) SP-AgNPs.