Supplementary Information

Interface engineering with self-assembling Au@Ag@ β -cyclodextrin bimetal nanoparticles to fabricate ring-like arrayed SERS substrate for sensitive recognition of phthalate esters based on host-guest interaction and the coffee ring effect

Jingfei Zhang, Yu Zhang and Guoyue Shi*

School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban

Ecological Processes and Eco-Restoration, East China Normal University, 500

Dongchuan Road, Shanghai 200241, China

*Authors to whom all correspondence should be addressed Fax: + 021-54340043; Tel.: + 021-54340043 E-mail: gyshi@chem.ecnu.edu.cn

Scheme S1 Schematic illustration of the synthesis of Au@Ag@ β -CD and Ag@Au@ β -CD core-shell nanoparticles.

Figure S1. SERS spectra of β -CD, Au@Ag@ β -CD, Au@Ag@ β -CD-10⁻⁶ M DMP and Au@Ag@ β -CD-10⁻⁶ M DMP after mixing 5 h.

Figure S2. STEM-EDS elemental mapping images of Agcore@Aushell@β-CD

Figure S3. Low magnification TEM images of (a) $Au@Ag@\beta$ -CD and (b) Ag@Au@\beta-CD core-shell nanoparticles; the corresponding particle size distribution curves of (c) $Au@Ag@\beta$ -CD and (d) Ag@Au@\beta-CD core-shell nanoparticles.

Figure S4. SEM-EDS elemental mapping images of (a-c) Au@Ag@ β -CD and (d-f) Ag@Au@ β -CD nanoparticles

Figure S5. The gradually enlarged SEM images of the ring-like Ag@Au@ β -CD SERS substrate (a, c, e) and the ring-like Au@Ag@ β -CD SERS substrate (b, d, f).

Figure S6. Concentration-dependent SERS spectra of (a) the ring-like Ag@Au@ β -CD and (b) the ring-like Au@Ag@ β -CD SERS substrates with various concentrations of Rh6G(1×10⁻⁶ M \cdot 1×10⁻⁷ M, 1×10⁻⁸ M, 1×10⁻⁹ M, 1×10⁻¹⁰ M, 1×10⁻¹¹ M \cdot 1×10⁻¹² M).

Figure S7. The standard deviation of EF of the ring-like Au@Ag@β-CD SERS

substrate

Figure S8. (a) Comparison of SERS intensity between ring-forming and non-ringforming normol substrates with concentration of 1×10^{-8} M Rh6G. (b) Comparison of SERS intensity of the coffee ring substrates formed by modified β -CD and unmodified β -CD Au@Ag nanoparticles with concentration of 1×10^{-8} M Rh6G.

Figure S9. the photograph of Ag@Au@\beta-CD and Au@Ag@\beta-CD suspensions solution

Sample	Added (nM)	Found (nM)	Recovery (%)	RSD	(n=5)
				(%)	
tap water	5	4.76	95.2	5.32	
	20	21.32	106.6	5.62	
	50	48.56	94.1	4.79	
river water	5	4.68	93.6	5.83	
	20	18.95	94.5	4.14	
	50	46.32	92.3	3.86	

Table S1. Detection of DOP in tap water and river water (n=5)

Table S2. Comparison of our proposed SERS method and previous reported SERS methods for the detection of PAEs

SERS- active	Test sample	PAE	Detectio n limit	Recovery (%)	RSD (%)	Refs
substance	I			()		
SiO ₂ @A	Standard	DOP	0.24 nM	none	none	1
u/Ag	sample	DBP	0.22 nM			
Au@Ag	Standard	BBP	1.3 ng	none	none	2
NCs	sample	DEH				
		Р				
Au NPs	Standard	DBP	1.3 µg			3
	sample					
AuNPs@	Liquors	BBP	14.9 nM	90~108	1.9~11.7	4
β-CD	and rice					
	wine					
Au NPs	Standard	DOP	10 nM			5
	sample					
Au@Ag	Tap and	DOP	0.2 nM	92~106.6	3.86~5.62	Our
@β-CD	river					work
NPs	water					

References:

1.Chen J, Qin G, Shen W, et al. Fabrication of long-range ordered, broccoli-like SERS arrays and application in detecting endocrine disrupting chemicals[J]. Journal of Materials Chemistry C, 2015, 3(6): 1309-1318.

2.Hu X, Wang X, Ge Z, et al. Bimetallic plasmonic Au@ Ag nanocuboids for rapid and sensitive detection of Phthalate plasticizers with label-free Surface-enhanced Raman Spectroscopy[J]. Analyst, 2019. 3.Liu J, Li J, Li F, et al. Liquid–liquid interfacial self-assembled Au NP arrays for the rapid and sensitive detection of butyl benzyl phthalate (BBP) by surface-enhanced Raman spectroscopy[J]. Analytical and bioanalytical chemistry, 2018, 410(21): 5277-5285.

4.Li J, Hu X, Zhou Y, et al. β-Cyclodextrin-Stabilized Au Nanoparticles for the Detection of Butyl Benzyl Phthalate[J]. ACS Applied Nano Materials, 2019.

5.Wu Y, Yu W, Yang B, et al. Self-assembled two-dimensional gold nanoparticle film for sensitive nontargeted analysis of food additives with surface-enhanced Raman spectroscopy[J]. Analyst, 2018, 143(10): 2363-2368.