1	
2	
3	
4	
5	Supporting information
6 7	
/	
8	Eu-doped MOF-Based High-efficiency Fluorescent Sensor for Detecting
9	2,4-dinitrophenol and 2,4,6-trinitrophenol Simultaneously
10	Lili Chen ¹ , Zihan Cheng ¹ , Xinyue Peng ¹ , Guoqiao Qiu* ² , Li Wang ¹
11 12	1. College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, PR China
13	2. Department of Visual Communication, Shanghai institute of Technology, 120 Caobao Road, Shanghai
14	200235, PR China
15	
16	
17	
18	
19 20	
20 21	
21	
23	
24	
25	
26	
27	
28	

AlCl₃·6H₂O (151 mg, 0.625 mmol), H₂bpydc (153 mg, 0.625 mmol) and glacial acetic acid
 (859 μL, 15.0 mmol) were added into 10 mL N,N-dimethylformamide (DMF). Then, the
 mixture was placed in 25 mL Teflon-lined Autoclave and heated in an electric heat oven at 413
 K for 48 h. The expected white microcrystalline powder was then filtered, washed several times
 with DMF and dried at 60°C for 6 h in vacuum oven.

8 Fig. S1 EDS spectra of MOF-253 (A) and Eu@MOF-253 (B).

11 Fig. S2 XRD patterns of MOF-253 and Eu@MOF-253.

2 Fig. S3 BET specific surface curve of MOF-253 (A) and Eu@MOF-253 (B).

4 Fig. S4 Fluorescence spectra of Eu@MOF-253. Inset: The photos of Eu@MOF-253 sensor suspensions under UV

5 lamp (orange) and Visible light (white).

3

7 Fig. S5 Fluorescence spectra of Eu@MOF-253 sensor upon addition of 2,4-DNP in ethanol (A) and in water (B).

1

Fig. S6 Excitation and emission spectra of Eu@MOF-253, Eu@MOF-253+2,4-DNP and Eu@MOF-253+TNP.
 3

6 Fig. S7 Fluorescence emission spectra of MOF-253 compound upon addition different concentrations of 2,4-DNP

 $^{7~~(0\}text{-}100~\mu\text{M})$ and TNP (0-80 $\mu\text{M}).$

9 Fig. S8 The Stern-Volmer plots for the interaction of Eu@MOF-253 with 2,4-DNP (A) and TNP (B).

2 Fig. S9 The determination of Ultraviolet diffuse reflection of Eu@MOF-253 in the presence of various3 nitroaromatic explosives.

2 Fig. S11 Recyclability of the Eu@MOF-253 sensor immerses in ethanol with 60 μM 2,4-DNP (A) or 25 μM TNP
3 (B).

5

6 Fig. S12. Fluorescence intensity at 365 nm of Eu@MOF-253 sensor in the absence and presence of
7 60 μM 2,4-DNP or 25 μM TNP for different days.

1 Table S1 Comparisons of the detection limit and Ksv of different probes for TNP detection.

Method		Detection limit	Ksv	References
PM-GSH-CuNCs	TNP	2.74 μM	7.80×10^{4}	[1]
$[Ca(DMF)_4 Ag_2(SCN)_4]_n$	TNP	2.33 μM	1.74×10^{4}	[2]
HPP-2	TNP	77.2 nM	2.41×10^{4}	[3]
$(ppy)_2 Ir(oz)$	TNP	0.23 μM	1.50×10^{4}	[4]
H 2 ATAIA	TNP	4.2 nM	1.76×10^{4}	[5]
ZnCr ₂ O ₄	TNP	100 nM	1.44×10^{5}	[6]
Eu@MOF-253	TNP	25 nM	1.58×10 ⁶	this work

- 3 [1] R. Patel, S. Bothra, R. Kumar, G. Crisponi, S.K. Sahoo, Biosens. Bioelectron., 2018, 102, 196-203.
- 4 [2] X.L. Yin, S.C. Meng, J.M. Xie, J. Clust. Sci., 2018, 29, 411-416.
- 5 [3] R.X. Sun, X.J. Huo, H. Lu, S.Y. Feng, D.X. Wang, H.Z. Liu, Sens. Actuators B, 2018, 265, 476-487.
- 6 [4] W.L. Che, G.F. Li, X.M. Liu, K.Z. Shao, D.X. Zhu, Z.M. Su and R. Bryce Martin, Chem. Commun., 2018, 54,
 7 1730-1733.
- 8 [5] P.J. Das, S.K. Mandal, J. Mater, Chem, C, 2018, 6, 3288-3297.
- 9 [6] D. Ghosh, U. Dutta, A. Haque, N. Mordvinova, O. Lebedev, K. Pal, A. Gayen, M.M. Seikh and P. Mahata,
- 10 Dalton. Trans., 2018, 47, 5011-5018.