A simple sensing platform based on 1T@2H-MoS$_2$/cMWCNTs composite modified electrode for ultrasensitive detection of the illegal Sudan I dye in food samples

Qiaoling Wu,ab Chun Ji,c Lingli Zhang,ab Qingli Shi,ab Yuangen Wu,ab Han Tao*

aSchool of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China.

bKey Laboratory of Fermentation Engineering and Biopharmacy of Guizhou Province, Guizhou University, Guiyang 550025, China.

cSchool of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China.

*Corresponding: Han Tao, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China.

E-mail address: taohanedu@126.com
Fig. S1 Nyquist plots obtained at bare GCE (curve blue), 1T@2H-MoS\textsubscript{2}/cMWCNTs/GCE (curve red) and 2H-MoS\textsubscript{2}/GCE (curve black) in 0.1 M KCl solution containing 5 mM [Fe(CN)\textsubscript{6}]3-/4-. Frequency range: 0.01 Hz ∼ 10 kHz, amplitude: 5 mV.
Fig. S2 SWV curves of 1T@2H-MoS$_2$/cMWCNTs/GCE to 50 μM Sudan I in different supporting electrolyte solution (pH 7.0, 0.1 M). enrichment time: 120 s, potential window: 0.2 V~1.0 V.
Fig. S3 (a) Effect of 1T@2H-MoS₂/cMWCNTs loading volume on peak current of Sudan I (50 μM), (b) Effect of accumulation time on peak current of Sudan I (50 μM). Supporting electrolyte solution: 0.1 M PBS (pH 7.5), Other conditions are the same as in Fig. S2.
Fig. S4 Storage stability of 1T@2H-MoS$_2$/cMWCNTs/GCE. The experimental conditions are the same as in Fig. 8.