Gold nanoparticle-based colorimetric aptasensor for rapid detection of mutiple mycotoxins in rice

Rui Li^a, Linzhi Li^a, Tianzeng Huang^b, Xing Liu^a, Qi Chen^a, Guiying Jin^c,

Hongmei Cao^a*

^aCollege of Food Science and Technology, Hainan University, 58 Renmin Avenue,

Haikou 570228, China;

^bCollege of Chemistry and Engineering Technology, Hainan University, 58 Renmin

Avenue, Haikou 570228, China;

^cGuangdong Institute for Drug Control, Shenzhou Road, Guangzhou 510663, China.

Corresponding Author.

E-mail addresses: hmcao@hainanu.edu.cn (Hongmei Cao)

Fig. S1 Characterization of AuNPs. (a) UV-vis absorption spectra of AuNPs; (b) DLS measurement of hydrodynamic diameter of AuNPs.

Fig. S2 The influence of OTA aptamer (a) and AFB_1 aptamer (b) concentrations on the absorbance ratio (A_{620}/A_{520}) of AuNPs solutions with added NaCl or not.

Fig. S3 Variation of absorbance ratio (A_{620}/A_{520}) for different methanol concentrations.

Fig. S4 Sensitivity of colorimetric aptasensor for OTA/AFB_1 detection. (a) UV-vis absorbance spectra of the AuNPs-aptamer solutions with different concentration of OTA ranging from 0.001 to 10 ng/mL; (b) The UV-vis absorbance spectra of sensing solutions treated with different concentration of AFB_1 (0.01 - 100 ng/mL).