Fabrication of 2D Metal-organic frameworks (MOFs)

nanosheets and investigation its fluorescence response to

pesticide molecules

Boya Su,^a Shengyun Liao, ^{a,b,*} Haitao Zhu,^a Shuxian Ge, ^a Yan Liu, ^a Jingyao Wang,^d Hui

Chen, ^{a,*} Lidong Wang ^{c,*}

^{*a*} Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, No. 391 Binshuixi Road, Tianjin, 300384, China

^b Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China

^c Rotam CropScience Limited Company, No. 16 Huangshan Road, Modern Industrial Park, Hangu of TEDA, Tianjin, 300457, China

^{*d*} Safety and Technical of Industrial Products Center, Tianjin Customs District, Tianjin, 300308, China

* Corresponding authors. E-mail: 18202587221@163.com (S. Liao), tjge@tjut.edu.cn (H. Chen), casiwang@rotam.com (L. Wang)

Table of contents

The routine for Synthesis of H ₂ TPYBDC	S1
¹ HNMR spectra of H ₂ TPYBDC	S1
Crystal data and structure refinement for Zn-LMOF	S2
The main bond lengths and bond angles for Zn-LMOF	S3
The XRPD patterns of the as-synthesized Zn-LMOF	\$3
Elemental mapping of the 2D Zn-LMOF nanosheets colloidal	S4
UV spectra of $H_2TPYBDC$, Zn-LMOF, and Zn-LMOF nanosheets colloidal	S5
The emission spectra of the 2D Zn-LMOF nanosheets colloidal	S5
Fluorescence spectra of glufosinate ammonium and glyphosate	S6
Summary of the reported detection methods	S7
Fluorescence spectra of probes in real water body	S8-S10
Analytical results for the detection of imidacloprid in domestic water	S11-S12
References	S12-S13

Scheme S1. The routine for Synthesis of H₂TPYBDC.

Identification code	Zn-LMOF	
Empirical formula	$C_{88}H_{56}N_{16}O_{20}Zn_4$	
Formula weight	1918.96	
Temperature/K	293(2)	
Crystal system	monoclinic	
Space group	P21/c	
a/Å	7.9231(4)	
b/Å	13.8107(6)	
c/Å	17.1406(8)	
<i>α</i> /°	90	
β/°	102.171(5)	
γ/°	90	
Volume/Å ³	1833.43(15)	
Z	1	
$\rho_{calc} g/cm^3$	1.738	
µ/mm ⁻¹	1.388	
F(000)	976.0	
Crystal size/mm ³	0.20×0.20×0.20	
Radiation	ΜοΚα (λ = 0.71073)	
2θ range for data collection/°	6.03 to 66.184	
Index ranges	-11≤h≤8, -21≤k≤18, -24≤l≤24	
Reflections collected	10152	
Independent reflections	6153 [R _{int} = 0.0415, R _{sigma} = 0.0746]	
Data/restraints/parameters	6132/0/292	
Goodness-of-fit on F ²	0.990	
Final R indexes $[I > = 2\sigma (I)]$	R ₁ = 0.0403, wR ₂ = 0.1035	
Final R indexes [all data]	$R_1 = 0.0728$, $wR_2 = 0.1328$	
Largest diff. peak/hole / eÅ ⁻³	0.64/-0.85	

Table S1. Crystal data and structure refinement for Zn-LMOF.

Bond Lengths	Length/Å	Bond Angles	Angle/°
Zn1-02	1.9711(16)	02-Zn1-031	103.59(8)
Zn1-03 ¹	1.9840(17)	O2-Zn1-N2 ²	147.97(7)
Zn1-N2 ²	2.0821(18)	O2-Zn1-N1 ²	88.29(7)
Zn1-N1 ²	2.2020(18)	O2-Zn1-N3 ²	109.55(7)
Zn1-N3 ²	2.1589(18)	O3 ¹ -Zn1-N2 ²	104.15(8)
O3-Zn1 ³	1.9839(17)	O31 -Zn1-N12	94.38(7)
N2-Zn1 ⁴	2.0821(18)	O3 ¹ -Zn1-N3 ²	109.45(7)
N1-Zn1 ⁴	2.2019(18)	N2 ² -Zn1-N1 ²	73.96(7)
N3-Zn1 ⁴	2.1590(18)	N2 ² -Zn1-N3 ²	75.54(7)
		N3 ² -Zn1-N1 ²	145.00(7)

 Table S2.
 The main bond lengths and bond angles for Zn-LMOF.

¹1+x, 1/2-y, -1/2+z; ²1-x, 1/2+y, 1/2-z; ³-1+x, 1/2-y, 1/2+z; ⁴1-x, -1/2+y, 1/2-z

Figure S2. The PXRD patterns of the as-synthesized Zn-LMOF ($[Zn(TPYBDC) \cdot H_2O]_n$).

Figure S3. Elemental mapping of the 2D Zn-LMOF nanosheets colloidal.

Figure S4. (a)The solid-state UV spectra of H₂TPYBDC and Zn-LMOF; (b) The UV spectrum of Zn-LMOF nanosheets colloidal.

Figure S5. The emission spectra of the 2D Zn-LMOF nanosheets colloidal at different excitation

wavelengths.

Figure S6. Fluorescence quenching response of Zn-LMOF nanosheets colloidal after adding (a) Glufosinate ammonium and (b) Glyphosate with various concentrations.

Pesticides	Material	Methods	Medium	LOD	Ref.
		HPLC	Water	0.005 mg/L	[S1]
		Fluorescence			
	GO-LICNPs	resonance energy	Phosphate	0.08 ng/m	[\$2]
	do-oenrs	transfer (FRET)	buffered solution	0.08 Hg/IIIL	[32]
		immunoassay			
Imidacloprid		Fluorescence	Phosphate	4.00×10⁻ ⁹ M	[53]
initiaciopria		method	buffered solution		[ວວ]
	nAgn _f /nTiO ₂ n _f	Electrochemical	Britton-Robinson	0 63×10⁻ ⁶ M	[54]
	modified GCE	sensor	buffered solution	0.03~10	[3+]
	2D Zn-LMOF	Eluorescence			This
	nanosheets	method	Water	0.562 μM	work
	colloidal	method			
	In(III)/Tb(III)–	Fluorescence	Water	0.17 ug/ml	[55]
	MOF	method		011, µ8, m2	[33]
		Surface Plasmon	Methanol	0.0085-0.11	[S6]
		Resonance		µg/mL	[00]
	β -cyclodextrin-			0.3 μg/mL	
Nitenpyram	reduced	Electrochemical	Phosphate buffered solution		[57]
	graphene oxide	sensor			[07]
	nanosheets				
	2D Zn-LMOF	Fluorescence		0.441 μM	This
	nanosheets	method	Water		work
	colloidal				
	S-CQDs/CuNCs	Fluorescence	Water	7.04 μM	[S8]
		method		•	
	b-CD-rGO/GCE	Electrochemical	Phosphate	0.01 mg/kg	[S9]
		sensor	buffered solution		
	Enzyme-linked				
	immunosorbent	HPLC	Methanol	0.6 ng/mL	[\$10]
	assay (ELISA)				
Dinotefuran		Rapid resolution			
		liquid		0.2 mg/kg	[511]
		chromatography			
		triples quadrupole	Acetonitrile		
		tandem mass			
		spectrometry			
		(RRLC-MS/MS)			
	2D Zn-LMOF	Fluorescence		0.247 μM	This
	nanosheets	method	Water		work
	colloidal				-

 Table S3. Summary of the reported detection methods for imidacloprid, nitenpyram, and

 Dinotefuran.

Figure S7. Fluorescence spectra of probes in river water with different concentrations of imidacloprid: (a) 50 μ M; (b) 70 μ M; (c) 100 μ M (The insets are the correlation curves between the relative fluorescent intensity and the times).

Figure S8. Fluorescence spectra of probes in tap water with different concentrations of imidacloprid: (a) 50 μ M; (b) 70 μ M; (c) 100 μ M (The insets are the correlation curves between the relative fluorescent intensity and the times).

Figure S9. Fluorescence spectra of probes in Nongfu Spring with different concentrations of imidacloprid: (a) 50 μ M; (b) 70 μ M; (c) 100 μ M (The insets are the correlation curves between the relative fluorescent intensity and the times).

Sample	Spiked/µM	Entry	I	Measured/µ	Average/µ	Recovery/
•		-		M	M	%
	100	1	1897	103.05	-	
		2	1914	101.19	-	
		3	1942	98.19	97.54	97.54
		4	1982	94.05		57.54
		5	1957	96.61		
		6	2001	92.14		
		1	2177	76.04		100.12
		2	2198	74.29		
River	70	3	2235	71.29	70.00	
Water		4	2244	70.58	70.09	100.15
		5	2300	66.25	_	
		6	2357	62.06		
		1	2433	56.78		
		2	2434	56.72		101.12
	50	3	2509	51.82	50.50	
	50	4	2581	47.39	50.56	
		5	2604	46.03	-	
		6	2628	44.63	-	
	100	1	1877	106.19	102.23	102.23
		2	1899	103.72		
		3	1975	95.61		
		4	1959	97.27		
		5	1883	105.51		
		6	1887	105.06		
	70	1	2185	76.14	-	
		2	2193	75.47		
Тар		3	2229	72.53	71.34	101.91
Water		4	2259	70.14	-	
		5	2307	66.46		
		6	2296	67.29		
		1	2371	61.78		
	50	2	2405	59.39	-	114.34
		3	2414	58.77		
		4	2455	56.00	- 57.17	
		5	2513	52.24		
		6	2473	54.82	1	
		1	1969	100.05	- 101.22	
Nongfu	100	2	1941	103.04		101.22
Spring		3	1932	104.02		

Table S4. Analytical results (mean $\pm \sigma$, n=6) for the detection of imidacloprid in domestic water.

		4	1956	101.43		
		5	1957	101.32		
		6	1994	97.45		
		1	2319	68.80		
		2	2300	70.26		
	70	3	2361	65.68	66.43	94.90
		4	2349	66.56		
		5	2369	65.10		
		6	2410	62.17		
		1	2504	55.82		
50	2	2523	54.59			
	3	2570	51.64	50 74	101 10	
	4	2610	49.21	50.71	101.42	
	5	2627	48.20			
		6	2686	44.79		

References

[S1] L. Li and Y. Cao , Determination of imidacloprid residues in farm water by HPLC, *Enterprise Technology Development*, 2010, **09** , 72-73.

[S2] Y. R. Guo, R. B. Zou, F. F. Si, W. L. Liang, T. Y. Zhang, Y. Y. Chang, X. S. Qiao and J. H. Zhao, A sensitive immunoassay based on fluorescence resonance energy transfer from up-converting nanoparticles and graphene oxide for one-step detection of imidacloprid, *Food Chemistry*, 2020, 335, 127609.

[S3] M. R. Kateshiya , N. I. Malek and S. K. Kailasa , Facile synthesis of highly blue fluorescent tyrosine coated molybdenum oxide quantum dots for the detection of imidacloprid pesticide, *Journal of Molecular Liquids*, 2020, **319** , 114329.

[S4] A. Kumaravel and M. Chandrasekaran, Electrochemical determination of imidacloprid using nanosilver Nafion/nanoTiO₂ Nafion composite modified glassy carbon electrode[J], *Sensors and Actuators B: Chemical*, 2011, **158**, 319-326.

[S5] A. J. Li , Q. Q. Chu , H. F. Zhou , Z. P. Yang , B. Liu and J. W. Zhang , Effective nitenpyram detection in a dual-walled nitrogen-rich In(III)/Tb(III)-organic framework, *Inorganic Chemistry Frontiers*, 2021, **8** , 2341-2348.

[S6] S. Miyake , Y. Hirakawa , T. Yamasaki , E. Watanabe , A. Harada , S. Iwasa and H. Narita , Simultaneous detection of six different types of pesticides by an immunosensor based on surface plasmon resonance, *Analytical Sciences*, 2010, **36** , 335-340.

[S7] M. Zhang , H. Zhang , X. C. Zhai , X. Yang , H. T. Zhao , J. Wang , A. J. Dong and Z. Y. Wang , Application of β -cyclodextrin-reduced graphene oxide nanosheets for enhanced electrochemically sensing nitenpyram residue in real samples, *New Journal of Chemistry*, 2017, **41** , 2169-2177. [S8] Y. Yang , Q. Y. Wei , T. Zou , Y. L. Kong , L. F. Su , D. Ma and Y. D. Wang , Dual-emission ratiometric fluorescent detection of dinotefuran based on sulfur-doped carbon quantum dots and copper nanocluster hybrid, *Sensors and Actuators B: Chemical*, 2020, **321** , 128534.

[S9] M. Zhang , X. C. Zhai , X. Yang , H. T. Zhao , A. J. Dong , H. Zhang , J. Wang and G.Y. Liu, Rapid and sensitive determination of dinotefuran residue based on electrochemical enhancement of β -cyclodextrin-graphene composite, *Electroanalysis*, 2016, **28** , 1-10.

[S10] E. Watanabe, K. Baba and S. Miyake, Analytical evaluation of enzyme-linked immunosorbent assay for neonicotinoid dinotefuran for potential application to quick and simple screening method in rice samples, *Talanta*, 2011, **84**, 1107-1111.

[S11] X. X. Chen , X. Z. Liu , B. Z. Dong and J. Y. Hu , Simultaneous determination of pyridaben, dinotefuran, DN and UF in eggplant ecosystem under open-field conditions: Dissipation behaviour and residue distribution, *Chemosphere*, 2018, **195** , 245-251.