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Text S1: Supplementary Methods 

Mass Spectrometer Settings and Acquisition Parameters. The mass spectrometric 

measurements were performed with an Autoflex Speed MALDI TOF/TOF mass 

spectrometer equipped with a 355 nm solid-state smartbeam Nd:YAG laser. The linear 

positive mode was adopted to improve the detection sensitivity. The instrumental 

parameters were optimized as follows: ion source 1 at 19.50 kV; ion source 2 at 17.90 

kV; lens voltage at 6.00 kV; detector voltage at 2.90 kV; pulsed ion extraction, 20 ns; 

Acquisition mode, random walk; total laser shot number at each sample well, 40,000; 

laser shot number at each raster position, 100; laser shot frequency, 500 Hz; and 

acquired mass range, m/z 0-1500. The laser was adjusted to 65% of the maximum 

power. The vacuum pressure was kept at around 10−6 to 10−7 mbar in the source and 

10−7 to 10−8 mbar in the analyzer. The instrument was controlled via Bruker Daltonics 

flexControl 3.4 software. The reflectron positive mode was adopted to measure the 

accurate mass of distinctive features. Mass calibration was performed with the internal 

standard calibration mixture with mass precision of 30 ppm, and the mass resolution 

(at m/z 361) is approximately 7000 (FWHM). 

 

MALDI-TOF Data Processing. MALDI-TOF raw data were converted to mzML with 

software ProteoWizard MSConvert and then processed with R packages MALDIquant 

and MALDIquantForeign. The log2 transformation was applied, followed by 

SavitzkyGolay smoothing, and SNIP baseline correction. The mass value alignment 

was performed with the alignSpectra command. Before peak detection, the six technical 

replicates were averaged with the averageMassSpectra command. Then, the peak 

detection was conducted with a signal-to-noise ratio of 3 and a half window size of 20. 

Peaks were binned with the binPeaks command with a tolerance of 0.0009. Peak 

filtration was applied with the filterPeaks command to keep the peaks with frequency 

≥25% in all spectra of a group (lung cancer patients or healthy controls). Finally, the 

obtained data matrices were used for the following analysis.  

 

Feature selection. The matrix of peak intensities was subjected to normalization with 

MSTUS (MS total useful signal) method with a "home-built" macro in Excel. The 

partial least squares-discriminant analysis (PLS-DA) was performed using 

Metaboanalyst 5.0 (McGill University, Montreal, Canada). The variable importance for 

the projection (VIP) identified by PLS-DA showed the contribution of each feature, 

and the peaks with top 20 VIP scores were selected as features of lung cancer. The 

Random Forest (RF), Extreme Gradient Boosting (XGBoost) and Light Gradient 
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Boosting Machine (LightGBM) was performed using Python Scikit-learn 0.23 package 

in Jupyter Notebook 6.1.4 and the feature importance function was performed to 

calculate the feature importance parameter. The importance of a feature is computed as 

the (normalized) total reduction of the criterion brought by that feature. It is also known 

as the Gini importance. The higher the value, the more important the feature. The 17 

peaks with the highest normalized feature importance in RF, 14 peaks with the highest 

normalized feature importance in XGBoost, 23 peaks with the highest normalized 

feature importance in LightGBM were selected as features of lung cancer. Finally, a 

two-sample t-test was performed to check the significance of altered levels of these 

features in the serum samples of lung cancer patients versus healthy controls (p < 0.001) 

using Metaboanalyst 5.0 (McGill University, Montreal, Canada). 

 

Internal validation. The principal component analysis (PCA) and Hierarchical 

Clustering Heatmap were performed using Metaboanalyst 5.0 (McGill University, 

Montreal, Canada). The K-nearest Neighbors (KNN) was performed using the 

sklearn.neighbors.KNeighborsClassifier package in Jupyter Notebook 6.1.4 and the 

n_neighbors of parameters was 1. The Support Vector Machine (SVM) was performed 

using the sklearn.svm.SVC package in Jupyter Notebook 6.1.4 and the kernel of 

parameters was poly. The Logistic Regression (LR) was performed using the 

sklearn.linear_model.LogisticRegression package in Jupyter Notebook 6.1.4 with 

default parameters. The Extremely Randomized Trees (ExtraTree) were performed 

using the sklearn.ensemble.ExtraTreesClassifier package in Jupyter Notebook 6.1.4 

with default parameters.  
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Figure S1. The representative MALDI-TOF MS spectra of samples from lung 

cancer patients and healthy control subjects. (A) MALDI-TOF mass spectra of 

serum samples from lung cancer patients and healthy controls; (B-F) Partial enlarged 

view of (A).  
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Figure S2. Unsupervised Learning between lung cancer patients and healthy 

controls. PCA score plots of all 783 processed ion peaks, with the first two PCs 

explaining 28.2% of the total variance. (A) The label colours - green represented lung 

cancer patients and red represented healthy controls; (B) The label colours - red 

represented samples from 20 to 30 years old, green represented samples from 30 to 40 

years old, purple represented samples from 40 to 50 years old, blue represented samples 

from 50 to 60 years old, blue represented samples from 50 to 60 years old, aubergine 

represented samples from 60 to 70 years old and yellow represented samples from 70 

to 80 years old. The data cannot be found a trend to be grouped according to age.  

 

 

 

 

Figure S3. PLS-DA model based on the MALDI-TOF data set. (A) Supervised PLS-

DA classification of lung cancer patients and healthy controls using different number 

of components. Red asterisk indicates the best classifier, R2=0.94, Q2=0.80, 

accuracy=0.97; (B) Permutation tests based on separation distance of PLS-DA, 

indicating that the discriminatory power of the PLS-DA model is robust and is 

associated with a statistically significant p value < 5E-04 (0/2000). 
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Figure S4. Schematic illustration of Glycerophospholipid metabolism. The 

compound colours within the pathway - blue represented metabolites that were not in 

the data and used as background in topology analysis with total importance of 0.89; 

and red represented the two metabolite (LysoPC(18:2(9Z,12Z)/0:0) and 

PC(14:0/20:2(11Z,14Z))) that was in the data and used in topology analysis with total 

importance of 0.11. 
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4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone       

 
 

9-Decenoylcholine                         Acetylcholine  

                                        (Analogous compound of 9-Decenoylcholine) 

      

 

 

Nicotine glucuronide 

          
 

 

LysoPC(18:2(9Z,12Z)/0:0) 

 

 

 

1-PalMitoyl-2-hydroxy-sn-glycero-3-phosphocholine (P-lysoPC, LPC) 

(Analogous compound of LysoPC(18:2(9Z,12Z)/0:0) 
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PC(14:0/20:2(11Z,14Z)) 

 
 

 

Lecithin (Analogous compound of PC(14:0/20:2(11Z,14Z)) 

 

 

 

Disialosyl galactosyl globoside 

 
 

 

Figure S5. The structural assignment of fragment ions recorded in MS/MS spectra.  
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Table S1. Metabolites selected as biomarkers to distinguish lung cancer patients from healthy controls 
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Table S2. Demographic information and clinical feature of lung cancer patients 

and healthy controls  

 

 

 

 

 


