Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information

Amphiprotic paper-based electrode for glucose detection based on layered carbon nanotubes with silver and polystyrene particles

Yajun Zheng, Yu Li, Libin Fan, Hedan Yao, Zhiping Zhang*

School of Chemistry and Chemical Engineering, Xi'an Shiyou University
Xi'an 710065, China

E-mail: zhipingzhang@xsyu.edu.cn

^{*} To whom correspondence should be addressed.

Figure S1. Comparison of the electrochemical performance of different paper electrodes containing various metal particles in the **(A)** absence and **(B)** presence of glucose (scanning speed: 50 mV s^{-1} ; concentration of glucose: $100 \mu\text{M}$).

Figure S2. (A) SEM images of CNT-NH₂/Ag-PS paper electrode and its [(B) and (C)] magnification images; (D) SEM images of CNT-NH₂-Ag-PS paper electrode and its [(E) and (F)] magnification images.

Figure S3. (A) Photographic images and (B) hydrophobicity of different paper electrodes.

Figure S4. Effects of different experimental parameters on the electrochemical performance of CNT-NH₂-Ag/PS paper electrode: **(A)** amount of starch involved, **(B)** amount of PS particles involved, **(C)** type of CNTs, **(D)** amount of CNT-NH₂ particles, **(E)** amount of Ag nanoparticles, and **(F)** electrode sensing area (inset is the schematic of paper electrode out of/in sample solution).

Figure S5. Comparison of the electrochemical performance of CNT-NH₂-Ag/PS paper electrode in different systems: **(A)** acidic, neutral and basic solution; **(B)** metal salts containing various cations; **(C)** metal salts containing various anions (scanning speed: 50 mV s⁻¹; concentration of glucose: 100 μ M).

Figure S6. Photographic images of glucose solution by adding different concentrations of AgNO₃ solutions (A) without and with (B) electrochemical measurement (electrode: CNT-NH₂-Ag/PS; scanning speed: 50 mV s⁻¹; concentration of glucose: 100 μ M).

Figure S7. Variation of **(A)** the contact angles and **(B)** the peak intensity of O1s spectra with increase in the cycle number of fabricated paper electrode (the experiment conditions were same as that in **Figure 4D**, and insets are the corresponding images of hydrophobic properties).

Figure S8. Amperometric response of CNT-NH $_2$ -Ag/PS paper electrode by the successive addition of glucose at the applied potential of 0.35, 0.40, 0.45, 0.50, 0.55 and 0.60 V.

Figure 58 is a typical amperometric response of the same CNT-NH₂-Ag/PS paper electrode at different working potentials ranging from 0.35 V to 0.60 V. By the successive addition of glucose at various potential, amperometry plots of CNT-NH₂-Ag/PS paper electrode demonstrated a series of stair-step response. By varying the working potential, the current demonstrated a first increasing trend followed by a decreasing one. As the applied potential was 0.50 V, the current reached the highest increment. Due to this reason, 0.50 V was chosen as the optimal potential.

Table S1. Fitting equivalent circuit parameters of different fabricated electrodes immersed in 0.1 M Na₂SO₄ solution, 5.0 mM K₃[Fe(CN)₆], and 5.0 mM K₄[Fe(CN)₆].

electrodes	R_s (Ω)	$R_{\mathrm{ct1}}\left(\Omega\right)$	R_{ct2} (Ω)	<i>CPE1</i> (μF)	<i>CPE2</i> (μF)
CNT-NH ₂ +Ag/PS	53.41	573.1	1873.0	0.969	0.265
CNT-NH ₂ +Ag+PS	57.65	667.3	2726.0	0.958	0.369
CNT-NH ₂ +Ag/PS	58.19	844.3	2807.0	1.008	0.408
CNT-NH ₂ /PS	59.66	1180.0	1666.0	1.032	0.233