Supporting Information

Wearable screen-printed SERS array sensor on fire-retardant fiber

substrate for on-site environmental emergency monitoring

Xue-Jian Li¹, Yuan-Ting Li^{1*}, Hai-Xin Gu², Li-Xia Qin¹, Peng-Fei Xue³, Sheng Han¹

 ¹ School of Chemical and Environmental Engineering, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, P.R. China
 ² Shanghai Fire Research Institute of MEM, 601 Second South Zhongshan Road, Shanghai 200032, P.R. China
 ³ DuPont (China) Holdings., Ltd, No. 255 Dongyu Road, Shanghai 200124, P.R. China

*Corresponding author: Yuan-Ting Li School of Chemical and Environmental Engineering Shanghai Institute of Technology No. 100 Haiquan Road Shanghai, 201418 P. R. China Tel/Fax: + 086 21 60873241 *Email: <u>liyuanting@sit.edu.cn</u> (YT Li)

Contents

Text S1 and S2 (Page S2) Fig. S1-S10 (Pages S3-S7) Video S1 (Page S8) Table S1 (Page S9) References (Page S9) **S1. Preparation of silver colloids (AgNPs)**. The citric-capped AgNPs were prepared as the Lee and Meisel method for comparison ^[1]. Briefly, 0.018 g AgNO₃ was dissolved in 100 mL of ultrapure water and brought to boiling, then 1 mL of 1% trisodium citrate solution was rapidly added. The solution was kept on boiling for approximately 20 min.

S2. Calculation of Enhancement Factor (EF). According to the literature ^[2,3],

 $EF = (I_{SERS} / I_{Raman}) \times (N_{Raman} / N_{SERS})$

Where I_{SERS} and I_{Raman} are the intensities of the same band in the SERS and ordinary Raman spectra of the target, respectively. N_{Raman} and N_{SERS} values are the estimated molecule numbers of the solution sample and that absorbed on the screen-printed substrate illuminated by the laser, respectively.

In this work, 3 μ L of 1.0 × 10⁻⁵ M R6G solution was dropped onto the screen-printed substrate, which left a spot of ca. 2.72 mm in diameter, following the SERS spectra of R6G were recorded, and the band 1359 cm⁻¹ was selected to calculate the EF. Since the surface coverage of R6G monolayer on the fire-retardant screen-printed substrate is considered to be $\Gamma_{R6G} = C_{R6G} \times V / S = (1.0 \times 10^{-5} \text{ M} \times 3 \mu\text{L}) / (\pi \times (2.72 / 2)^2 \text{ mm}^2) = 5.16 \times 10^{-10} \text{ mol/cm}^2$, it can be reckoned that N_{SERS} has a value of 4.05 × 10⁻¹⁴ mol [N_{SERS} = $\Gamma_{R6G} \times \pi \times (10 / 2)^2 \mu\text{m}^2 = 4.05 \times 10^{-14} \text{ mol}$], considering the sampling area under laser illumination (ca. 10 μ m in diameter).

For the solution sample, 5 μ L of 6.06 M R6G solution was pipetted on silicon wafer, which left a spot of ca. 3.00 mm in diameter. Therefore, N_{Raman} has a value of 3.36 × 10⁻⁸ mol [N_{Raman} = (6.06 M × 5 μ L) / (π × (3.00 / 2)² mm²) × π × (10 / 2)² μ m² = 3.36 × 10⁻⁸ mol].

Raman intensity I_{SERS} is 64526 cnts at the band of 1359 cm⁻¹, and the I_{Raman} is measured to be 311 cnts. Therefore,

 $EF_{R6G} = (I_{SERS} / I_{Raman}) \times (N_{Raman} / N_{SERS}) = (64526 \text{ cnts} / 311 \text{ cnts}) \times (3.36 \times 10^{-8} \text{ mol} / 4.05 \times 10^{-14} \text{ mol}) = 1.71 \times 10^{8}.$

Fig. S1 The design diagram of the wearable fire-retardant screen-printed SERS arrays with the diameter of 2 mm for each spot.

Fig. S2 Photograph of screen-printed stencil with the designed arrays.

Fig. S3 Representative HRTEM image of Ag/MoS₂ nanocomposites, and the corresponding size distribution.

Fig. S4 Photographs of PAC solution with the concentration of 0.5 wt%, 1 wt%, 2 wt% and 3 wt% (from left to right).

Fig. S5 The magnified photograph of screen-printed SERS arrays on fire-retardant fiber substrate using Ag/MoS_2 ink mixed with 1 wt%, 2 wt% and 3 wt% of PAC solution.

Fig. S6 SERS spectra of 10⁻⁵ M R6G detected using the screen-printed SERS on fire-retardant fiber glove with different printing layers.

Fig. S7 SERS spectra of 10⁻⁵ M R6G detected using screen-printed SERS array sensor on fireretardant fiber glove under different temperature for 10 min.

Fig. S8 (A) The photos of fire-retardant fibre gloves under bending states. (B) The relative SERS intensity percentage of the band 1359 cm⁻¹ for 10⁻⁵ M R6G detected using wearable screen-printed SERS array printed on fire-retardant fibre gloves under different bending times.

Fig. S9 SERS spectra of the fire-retardant fibre glove, PAC solution and Ag/MoS₂ colloid under 785 nm excitation.

Fig. S10 SERS spectra of different concentrations for R6G detected using screen-printed SERS array sensor on fire-retardant fiber glove.

Video. S1 The kinematic viscosity video detected used a SYD-256B kinematic viscosity tester with the screen-printing ink composed of Ag/MoS₂ colloid added 3 wt% PAC (4:1, v:v).

Naphthalene		Anthracene		Pyrene		Assignments
Raman (cm ⁻¹)	SERS (cm ⁻¹)	Raman (cm ⁻¹)	SERS (cm ⁻¹)	Raman (cm ⁻¹)	SERS (cm ⁻¹)	
-	-	392	387	-	-	VC-C-C-C
-	-	-	-	408	401	VC-C-C-C
-	-	-	-	457	-	VC-C-C-C
-	-	-	-	503	-	VC-C-C-C
509	508	-	-	-	-	ac-c-c
-	-	-	-	592	609	VC-C-C-C
-	-	753	750	-	-	VC-C
761	755	-	-	-	-	$\gamma_{ ext{C-H}}$
1020	1018	1008	1020	-	-	VC-C
-	-	-	-	1066	1083	$\delta_{\text{C-H}}$
1146	1158	-	-			$\beta_{ ext{C-H}}$; $ au_{ ext{C-C-C-H}}$
-	-	1188	-			V _{C-C}
-	-	-	-	1144	1174	$\delta_{\text{C-H}}$
-	-	1262	1294	-	-	$ au_{ ext{C-C-C-H}}$
-	-	-	-	1241	1307	v_{C-C} ; δ_{C-H}
1382	1375	1403	1375	1408	1403	v_{C-C} ; $\tau_{C-C-C-H}$
1464	-	1482	-	-	-	$v_{C-C}; \beta_{C-C}$
1577	1562	1560	1560	1596	1568	VC-C
1629	1609	-	-	1629	1616	VC-C

Table S1. Raman and SERS spectral data of naphthalene, anthracene, and pyrene incubated in wearable SERS array sensor ^[4-7].

v : stretching; γ : out-of-plane bending; β : in-plane bending; δ : scissoring

References

[1] Lee, P.C., Melse, D., 1982. Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols. J. Phys. Chem. 86, 3391-3985.

[2] Li, Y.T., Yang, Y.Y., Sun, Y.X., Gao, Y., Huang, Y.S., Han, S., 2020. Electrochemical fabrication of reduced MoS₂-based portable molecular imprinting nanoprobe for selective SERS determination of theophylline. Microchim. Acta. 187, 203.

[3] Xu, J.T., Shang, S.M., Gao, W., Zeng, P., Jiang, S.X., 2021. Ag@ZIF-67 decorated cotton fabric as flexible, stable and sensitive SERS substrate for label-free detection of phenol-soluble modulin. Cellulose. 28, 7389-7404.
[4] Du, J.J., Xu, J.W., Sun, Z.L., Jing, C.Y., 2016. Au nanoparticles grafted on Fe₃O₄ as effective SERS substrates for label-free detection of the 16 EPA priority polycyclic aromatic hydrocarbons. Anal. Chim. Acta. 915, 81-89.
[5] Chen, J., Huang, Y.W., Zhao, Y.P., 2015. Characterization of polycyclic aromatic hydrocarbons using Raman and surface-enhanced Raman spectroscopy. J. Raman Spectrosc. 46, 64-69.

[6] Jones, C.L., Bantz, K.C., Haynes, C.L., 2009. Partition layer-modified substrates for reversible surfaceenhanced Raman scattering detection of polycyclic aromatic hydrocarbons. Anal. Bioanal. Chem. 394, 303-311.
[7] Zhao, H.Y., Jin, J., Tian, W.J., Li, R., Yu, Z., Song, W., Cong, Q., Zhao, B., Ozaki, Y., 2015. Threedimensional superhydrophobic surface-enhanced Raman spectroscopy substrate for sensitive detection of pollutants in real environments. J. Mater. Chem. A. 3, 4330-4337.