# Smartphone-Based Visual Detection of Bilirubin Using Yellow Emitting Carbon Dots

#### Azad H. Alshatteri,<sup>a.b</sup> and Khalid M. Omer<sup>a</sup>

<sup>a</sup>Department of Chemistry, College of Science, University of Sulaimani, Qliasan St,46002, Sulaimani City, Kurdistan Region, Iraq.

<sup>b</sup>Department of Chemistry, College of Education, University of Garmian, Darbandikhan Road, 46021, Kalar City-Sulaimaniyah Province, Kurdistan of Iraq.

Corresponding address: khalid.omer@univsul.edu.iq

# Quantum Yield of Y-CDs

The fluorescence quantum yield of Y-CDs was measured using fluorescein as a reference based on the following equation,

$$\Phi_{CDs} = \Phi_{ref} \left( \frac{I_{CDs}}{I_{Ref}} \right) \left( \frac{\eta_{CDs}}{\eta_{ref}} \right)$$

where  $\Phi$  stands for quantum yield, I is the integrated fluorescence intensity of luminescent spectra, and  $\eta$  is the refractive index. The subscript *Ref* refers to reference with known quantum yield and CDs for the Y-CD in this equation. For standard solutions from each were prepared and their absorbance and fluorescent spectra were recorded at the maximum excitation wavelength of Y-CDS and fluorescein. The data was plotted and the slope of the Y-CDs and fluorescein were found

$$\Phi_{CDs} = 91 \left(\frac{135840}{338005}\right) \left(\frac{1.334}{1.336}\right) = 36.5\%$$

Thus, the fluorescence QY% of the Y-CDs was 36.5%

Table S1 Quantum yield measurements of Y-CDs using fluorescein in 0.1 M NaOH as reference.

| Different Soln. of CDs and Ref separately |                      | Integrated FL |       | Abs   |       |
|-------------------------------------------|----------------------|---------------|-------|-------|-------|
| CDs solutions                             | fluorescein solution | CDs           | Ref   | CDs   | Ref   |
| Std 1                                     | Std 1                | 2983          | 5705  | 0.016 | 0.006 |
| Std 2                                     | Std 2                | 10387         | 18275 | 0.073 | 0.043 |
| Std 3                                     | Std 3                | 12286         | 21671 | 0.083 | 0.052 |
| Std 4                                     | Std 4                | 14895         | 28577 | 0.104 | 0.074 |

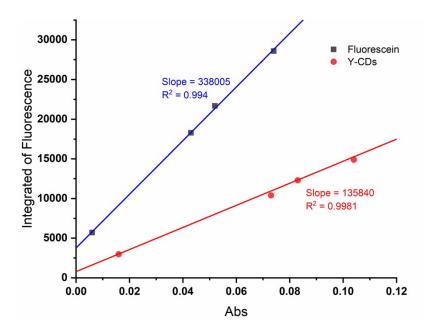



Fig S1: fluorescence of CDs and Fluorescein as reference for determination of QY%

# pH study

to study the influence of the pH on the fluorescence intensity of the Y-CDs, different buffer solutions with various pH ranges were used. The results revealed that the optimum pH is a phosphate-buffered saline solution (pH = 7.4)

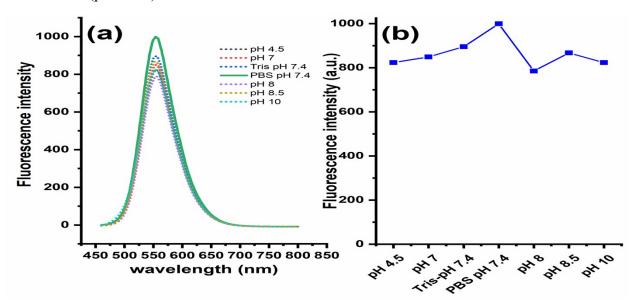



Fig S2: (a) The fluorescence intensity of Y-CD at various pH solutions 4.5–10 with various buffer solutions. (b) Fluorescence spectra of the Y-CD at various buffer solutions from 4.5 to 10.

#### **Response time Study**

The response time for quenching of the Y-CDs after the addition of bilirubin was studied. When bilirubin was added, the fluorescence of Y-CDs was immediately quenched and tended to remain stable after 5 minutes, as seen in Fig. S3. This finding suggests that Y-CDs may be utilized to detect bilirubin quickly and effectively. In the standard clinical method, the color change utilizing diazotization reaction needs 30 minutes to assess free bilirubin.

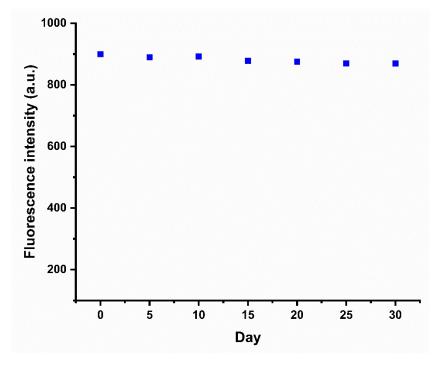



Fig S3: stability of Y-CDs during the one month refreezing at 4°C

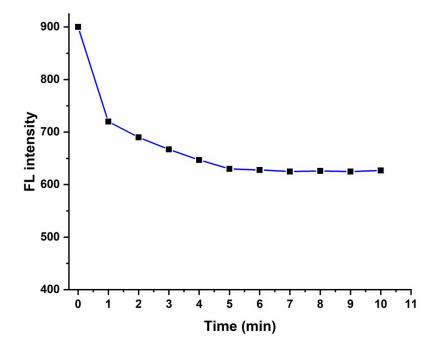



Fig S4: The fluorescence intensity of Y-CDs after the addition of bilirubin as a function of time.