Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2022

## 522 Journal: Analytical Methods

523 Supplementary material of the article:

### 524 Evaluation and optimization of influence of silver cluster ions into MALDI-TOF-MS

- 525 analysis of polystyrene nanoplastic polymer
- 526
- 527 Théogène Habumugisha<sup>a,b</sup>, Zixing Zhang<sup>a</sup>, Jean Claude Ndayishimiye<sup>a,b</sup>, François

528 Nkinahamira<sup>*a,b*</sup>, Alexis Kayiranga<sup>*ab*</sup>, Eric Cyubahiro<sup>*a,b*</sup>, Rehman Abdul<sup>*a,b*</sup>, Changzhou Yan<sup>*a*</sup>,

- 529 Xian Zhang<sup>*a*,\*</sup>
- 530
- 531 aKey Lab of Urban Environment and Health, Institute of Urban Environment, Chinese
- 532 Academy of Sciences, Xiamen 361021, China
- 533 <sup>b</sup>University of Chinese Academy of Sciences, Beijing 100049, China

534

535

### 536 \*Corresponding authors:

- 537 Zhang Xian, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021,
- 538 China, E-mail: xzhang@iue.ac.cn

539

540 This supplementary information contains:

541 4 Pages

- 542 1 Table
- 543 1 Figure
- 544 7 References

| CAS No     | Chemical name     | Chemical              | Molecular characteristic      |                               | Manufacturer's    | Supplier           |
|------------|-------------------|-----------------------|-------------------------------|-------------------------------|-------------------|--------------------|
|            |                   | formula               | Weight (g mol <sup>-1</sup> ) | Density (g cm <sup>-3</sup> ) | name              |                    |
| 1143-38-0  | Dithranol         | $C_{14}H_{10}O_3$     | 226.23                        | 1.40                          | Dithranol         | Sigma-Aldrich, USA |
| 490-79-9   | 2,5-              | $C_7H_6O_4$           | 154.12                        | 1.37                          | 2,5-              | Sigma-Aldrich, USA |
|            | Dihydroxybenzoic  |                       |                               |                               | Dihydroxybenzoic  |                    |
|            | acid (DHB),       |                       |                               |                               | acid (DHB),       |                    |
|            | Sinapic acid      | $C_{11}H_{12}O_5$     | 224.21                        |                               | Sinapic acid      |                    |
| 7761-88-8  | Silver nitrate    | AgNO <sub>3</sub>     | 169.87                        | 4.35                          | Silver nitrate    | Sigma-Aldrich, USA |
| 1634-82-8  | 2-(4-             | $C_{13}H_{10}O_{3}$   | 214.22                        | 1.30                          | 2-(4-             | Sigma-Aldrich, USA |
|            | hydroxyphenylazo) |                       |                               |                               | hydroxyphenylazo) |                    |
| 20052 71 7 | benzoic acid      |                       | 197 10                        | 1 /                           | benzoic acid      | Ciana Aldrich LICA |
| 29953-/1-/ | I rans-3-         | $C_{11}H_9NO_2$       | 187.19                        | 1.4                           | trans-3-          | Sigma-Aldrich, USA |
|            | (IAA)             |                       |                               |                               | (IAA)             |                    |
| 120-12-7   | Anthracene        | $C_{14}H_{10}$        | 178.22                        | 1.1                           | Anthracene        | Sigma-Aldrich, USA |
| 83-32-9    | Acenaphthene      | $C_{12}H_{10}$        | 154.20                        | 1.06                          | Acenaphthene      | Sigma-Aldrich, USA |
| 129-00-0   | Pyrene            | $C_{16}H_{10}$        | 203.25                        | 1.27                          | Pyrene            | Sigma-Aldrich, USA |
| 2966-50-9  | Silver            | CF <sub>3</sub> COOAg | 220.88                        | N/A                           | Silver            | Sigma-Aldrich, USA |
|            | trifluoroacetate  |                       |                               |                               | trifluoroacetate  |                    |
| 10125-13-0 | Copper (II)       | CuCl <sub>2</sub>     | 134.45                        | 3.39                          | copper (II)       | Sigma-Aldrich, USA |
|            | chloride          |                       |                               |                               | Chloride          |                    |
| 109-99-9   | Tetrahydrofuran   | $(CH_2)_3CH_2O$       | 72.11                         | 0.89                          | Tetrahydrofuran   | Sigma-Aldrich, USA |
| 75-05-8    | Acetonitrile      | CH <sub>3</sub> CN    | 41.05                         | 0.79                          | Acetonitrile      | Sigma-Aldrich, USA |

# 545 Supplementary Table S1. List of chemical reagents.

#### 549 Optimization of PSN sample mixture for the MALDI analysis

PSN sample was prepared by mixing silver trifluoroacetate, pyrene and polystyrene and the ratio of this mixture was chosen and optimized, where different volumes were varied. The intensities of different mass spectra results were compared one to another to confirm the proper ratio to use for the PSN analysis. The mass spectra obtained to investigate PSN with pyrene, anthracene and silver trifluoroacetate were almost the same. Therefore, the ratio variation was done to see whether both matrices could produce distinguished mass spectra (Fig. 1).

Solutions were prepared by mixing matrix, analyte and cation while varying the relative proportions of the components such that nine unique samples mixtures are made. For example, keeping the amount of added pyrene stock solution constant (e.g.,  $10 \ \mu$ L), vary the amount of PSN solution by a factor of two (e.g., 4, 2, and 1  $\mu$ L), while also varying the amount of AgTFA solution by a factor of two (e.g., 20, 10, and 5  $\mu$ L). These samples effectively produced a 3 x 3 grid of samples with the two different concentration variables on the x and y axes.



Fig. 1 Variation of silver trifluoroacetate and polystyrene nanoplastics ratio for optimization

The 3x3 grid for sample ratio determination was done using a 3x3 grid of samples, the relative concentrations of cationization agent-analyte-matrix were systematically varied to empirically determine an optimized sample preparation. This was typically done by holding one of the three variables constant (20  $\mu$ L of matrix solution) while increasing the amount of the other two (cationization agent (y-axis) and analyte (x-axis) components) by a set multiple (2-fold in the example depicted).

568

| 569        |       |                                                                                                                                             |
|------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 570        | Refer | rence                                                                                                                                       |
| 571        | 1     | WF. Su, in Principles of polymer design and synthesis, Springer, 2013, pp. 9–26.                                                            |
| 572<br>573 | 2     | M. Wagner, C. Pietsch, L. Tauhardt, A. Schallon and U. S. Schubert, <i>J. Chromatogr. A</i> , 2014, <b>1325</b> , 195–203.                  |
| 574<br>575 | 3     | R. F. Brady, <i>Comprehensive desk reference of polymer characterization and analysis</i> , American Chemical Society Washington, DC, 2003. |
| 576<br>577 | 4     | J. W. A. van den Berg and J. Schuijer, in <i>Macromolecular Biomaterials</i> , CRC Press, 2018, pp. 19–56.                                  |
| 578        | 5     | G. Capaccio and I. M. Ward, Polymer (Guildf)., 2015, 15, 233-238.                                                                           |
| 579        | 6     | N. Ghahramani and M. Rahmati, Int. J. Heat Mass Transf., 2020, 154, 119487.                                                                 |
| 580        | 7     | Y. Guillaneuf and P. Castignolles, J. Polym. Sci. Part A Polym. Chem., 2008, 46, 897–911.                                                   |