Supplemental information:

Angiopep-2-Functionalized Nanoparticles Enhances Transport of Protein Drugs across Intestinal Epithelia by Self-Regulation of Targeted Receptors

Xi Liu, Ruinan Wu, Yuting Li, Lingling Wang, Rui Zhou, Lian Li, Yucheng Xiang, Jiawei Wu, Liyun Xing, Yuan Huang*

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China

*Corresponding authors. Tel. /fax: + 8628 85501617
E-mail address: huangyuan0@163.com (Yuan Huang)
Postal address: West China School of Pharmacy, Sichuan University. No. 17, Block 3, South Renmin
Road, Chengdu610041, P.R. China

Methods

1. Cell viability

Alamar Blue assay was applicated to evaluate the effect of NPs on cell viability. Caco-2 cells were seeded in 96-well plates at the density of 8 β 10³ cells/mL and cultured for 3 days. After removal of DMEM and washed by PBS, cells were incubated with blank NPs decorated by different molar

ratios of ANG (PEG NPs, 25%ANG NPs, 50%ANG NPs, 75%ANG NPs and 100%ANG NPs) at the concentrations of PLGA equivalent to 100, 200, 400, 600 and 800 μ g/mL (150 μ L/well) for 3 h. Then, cells were washed twice with cold PBS to separate extracellular NPs. Finally, Alamar Blue DMEM solution (10 μ g/mL) was added into each well (150 μ L/well) for 1 h and the absorption of each well was measured at Ex: 490 nm/Em: 570 nm via a Varioskan Flash Multimode Reader. The cell viability was calculated by following formula:

$$Hemolysis \ ratio\% = \frac{A_{NPs} - A_{saline}}{A_{triton} - A_{saline}} \times 100$$

2. LDH release study

Caco-2 cells were seeded in 96-well plates at the density of 8 $\not \approx$ 10³ cells/mL and cultured for 3 days. After removal of DMEM and washed by PBS, cells were exposed to blank PEG NPs and 100%ANG NPs at the concentration of PLGA equivalent to 100, 200, 400, 600 and 800 µg/mL (150 µL/well) for 3 h. Finally, the supernatant was collected and LDH level was measured by a LDH assay kit.

Figures:

Cys-Angiopep-2.

Figure S2. ¹H-NMR spectra of DSPE-PEG₂₀₀₀-Mal and DSPE-PEG₂₀₀₀-ANG.

Figure S3. (A) FRET effects of DiI-PEG NPs, DiO-PEG NPs and DiO/DiI-PEG NPs; (B)FRET efficiency changes of fluorescence-labeled NPs after incubation with SGF (pH 1.2), SIF (pH 6.8), PBS (pH 5.0) and PBS (pH 7.4). Error bars represent SD (n = 3).

Figure S4 (A) Viability of Caco-2 cells after incubation with a series of NPs decorated by different molar ratios of ANG by Alamar Blue assay. Mean \pm SD (n=6). (B) LDH release level of Caco-2 cells after incubation with PEG NPs and 100%ANG NPs. P and N respresent positive control (0.1% Triton) and negative control (PBS), respectively. Mean \pm SD (n=6). (C) TEER change of Caco-2 cell monolayer before and after incubation with PEG NPs and 100%ANG NPs. Mean \pm SD (n=3) (D) Relative hemolysis ratio after exposing erythrocyte to PEG NPs and 100%ANG NPs for 2 h. P represents positive control (0.1% Triton). Mean \pm SD (n=6).

Tables:

Samples	Size/nm	PDI	Zeta potential/mV
Dil PEG NPs	102.1±1.0	0.156	-4.97±1.33
DiI 25% ANG NPs	123.9±2.2	0.190	-23.63±1.34
DiI 50% ANG NPs	118±4.8	0.182	-22.47±2.19
DiI 75% ANG NPs	99.5±2.6	0.198	-6.99±3.27
DiI 100% ANG NPs	145.0±0.4	0.108	-13.17±0.22
DiO PEG NPs	105.5±1.4	0.140	-23.43±2.05
DiO100%ANG NPs	141.4±3.6	0.081	-7.29±0.84
DiR PEG NPs	86.2±0.2	0.213	-20.47±2.55
DiR 100%ANG NPs	110.2±0.8	0.160	-22.23±0.64

Table S1. Size, PDI and zeta potential of dye-loaded NPs in water (n=3)

Table 1. Concentration and functions of chemicals used in endocytosis inhibition study

Endocytosis inhibitors	Concentration	Functions
NaN ₃	1.0 mM	Inhibitor of energy-dependent pathway
Μ-β-CD	1.0 mM	Inhibitor of caveolae-mediated pathway
Lovastatin	10 μg/mL	Inhibitor of caveolae -mediated pathway
Chlorpromazine	30 µM	Inhibitor of clathrin-mediated pathway
Hypertonic sucrose	0.4 M	Inhibitor of clathrin-mediated pathway
Amiloride	12 μg/mL	Inhibitor of macropinocytosis

Table 2. Pharmacokinetic parameters of C6-PEG NPs and C6-ANG NPs in mice

Groups	Dose (mg/kg)	C _{max} (ng/mL)	AUC _{0-24h} (ng*h/mL)
C6-PEG NPs	1	11.412 ± 4.486	40.862 ± 10.036
C6-ANG NPs	1	37.49±13.129	205.973 ±82.283