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1. Materials and apparatus

The Gd-DTPA-SA[S1] and PEG-PHEMA-I [S2] were prepared according to previous 

protocols. Calcein AM/PI stain kit, NIH-3T3 normal cells and HeLa cells were 

purchased from Nanjing KeyGEN Biotech. Co. Ltd. Other Chemicals were purchased 

from Aladdin. All mice studies were approved by Animal Ethics Committee of 

Nanjing KeyGEN Biotech. Co. Ltd. and performed in Nanjing KeyGEN Biotech. Co. 

Ltd. The morphology and size of NPs were determined by a HT7700 transmission 

electron microscope (TEM) and a particle size analyzer (Brookhaven Instruments), 

respectively. Absorption and emission spectra were obtained using a UV3600 

UV/vis/NIR spectrophotometer (Shimadzu) and a FLSP920 fluorescence 

spectrophotometer (Edinburgh), respectively. The MTT experiments were conducted 

using a PowerWave XS/XS2 microplate reader (BioTek).

2. Synthesis of DPPB

Fig. S1. Synthetic route of DPPB.

Compound 1 (0.1 mmol, 121 mg) and compound 2 (0.1mmol, 15 mg), Pd(PPh3)4 (15 

mg), and diisopropylamine (30 mL) were mixed in a reaction bottle under N2 

atmosphere. The mixture was vigorously stirred at 85 °C for 48 h. After removal of 

the solvent, the crude product was settled with ether to obtain DPPB as a black-green 

solid.
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Fig. S2. 1H NMR spectrum of DPPB.

Fig. S3. GPC of DPPB, the number-average of DPPB was 14000.
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3. Molar absorption coefficient of DPPB-Gd-I NPs

Fig. S4. (a) Absorption curves of DPPB-Gd-I NPs aqueous solution at different 

concentrations. (b) Linear absorbance versus concentration obtained from (a).

4. Photodynamic measurement of DPPB-Gd-I NPs

Fig. S5. Absorption spectra of the mixed aqueous solution of DPPB-Gd-I NPs and 

DPBF under 660 nm laser irradiation with different power densities (a) 0.25, (b) 0.50, 

(c) 0.75 W/cm2. (d) The decline of normalized absorption of DPBF resulted from 660 

nm light induced DPPB-Gd-I NPs.
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5. Infrared thermal images of DPPB-Gd-I NPs

Fig. S6. (a) Infrared thermal images of DPPB-Gd-I NPs at various concentrations 

upon 660 nm laser illumination.

6. Photothermal measurement of DPPB-Gd NPs

Fig. S7. (a) Heating curves of DPPB-Gd NPs at various concentrations upon 660 nm 

laser illumination. (b) Heating curves of DPPB-Gd NPs upon 660 nm laser 

illumination with various powers.
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7. Cellular uptake of NPs

Fig. S8. The cellular uptake of NPs toward HeLa cells evaluated by (a) confocal laser 

scanning microscopy and (b) flow cytometry.

Due to the fluorescence emission wavelength of polymer was too long, which was 

not suitable for confocal laser scanning microscopy. Fluorescein isothiocyanate (FITC) 

was used as a model dye and encapsulated by Gd-DTPA-SA and PEG-PHEMA-I to 

form water-soluble FITC NPs. HeLa cells after incubation with FITC NPs for 12 h 

showed intense green fluorescence assigned to nanoparticles, indicating the effective 

cellular internalization of the NPs, which was consistent with the result of flow 

cytometry.

8. Penetration depth measurement of DPPB-Gd-I NPs

Fig. S9. Penetration depth measurement of DPPB-Gd-I NPs in a simulated deep-

tissue setting (chicken-breast tissues).

9. Ex vivo NIR-II fluorescence imaging of tumor and major organs
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Fig. S10. (a) Ex vivo NIR-II image of tumors and major organs. (b) Semi-quantitative 

biodistribution analysis based on fluorescence intensity of tumors and major organs.

10.H&E stained images of tumor

Fig. S11. H&E stained images of tumor. Scale bars: 80 μm.
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