

SUPPLEMENTARY FIGURES AND TABLES

Figure S1. Morphology of H1 cells on PA hydrogel. (a) Optical images of H1 cells on a topographical PA hydrogel pre-coated with 200 µg/ml collagen I in planar (*P*), grooved (*G*), square pillar (*S*), or hexagonal (*H*) configurations, illustrating their morphological changes from stem cells (STEM) through definitive endoderm (DE) and precursor hepatocytes (Pre-H) to hepatocyte-like cells (M-H) on soft (6.1 kPa) or stiff (46.7 kPa) substrates. Bar = 50 µm. *Dotted boxes* indicated the typical morphology on grooved PA gel. (B-E) Morphological analyses of H1 cells on topography- or stiffnessvaried substrates. The aspect ratio (b), circularity (c), and projected area (d) of H1

clones were measured (as shown in the *solid box* in panel A) and the average number of clones per unit area was determined in each replicate (E). Data were presented as the mean \pm SE from triplicate repeats (totally >132 colonies). * or **, P < 0.05 or 0.01 compared with the values between distinct topographies at same stiffness. # or ###, P < 0.05 or 0.001 compared with the values between stiff and soft substrates in same configuration (two-way ANOVA).

Figure S2. SEM images of H1 cells differentiating into HLCs at the four stages. *Arrows* indicated the sites where ECM tended to be accumulated at the Pre-H or M-H stage.

Figure S3. Biomarker expressions of H1 cells at different topographies on *stiff* PA gel. Typical immunostaining (*1st row*) or immunoblotting (*2nd row*) images of OCT-4 and NANOG (a, d), SOX17 and CXCR4 (or GATA6) (b, e), or ALB and CK18 (c, f) were illustrated at the STEM, DE or M-H stage. Bar = 50 μ m.

Figure S4. Biomarker expressions of H1 cells at different topographies on *soft* PA gel. Typical immunostaining (*1st row*) or immunoblotting (*2nd row*) images of OCT-4 and NANOG (a, d), SOX17 and CXCR4 (or GATA6) (b, e), or ALB and CK18 (c, f) were illustrated at the STEM, DE or M-H stage. Bar = 50 μ m.

Figure S5. Functional tests of the differentiated H1 cells at the Pre-H stage. (a-e) Typical immunostaining images (a) and the related quantifications of ALB (b) and CK18 (c) biomarkers, as well as *ALB* (d) and *AFP* (e) gene expressions were presented. (f-g) Also plotted were the histological and histochemical staining of glycogen synthesis (f) and ICG engulfment (g). *Arrows* or *arrowheads* indicated the differences on a stiff or soft substrate, respectively. * or ***, P < 0.05 or 0.001 compared with the values between distinct topographies at same stiffness. #, P < 0.05 compared with the values between stiff and soft substrates in same configuration (two-way ANOVA).

Figure S6. Summaries of growing H1 cells on matrigel-coated petri dish. (a-b) Typical optical (a) and SEM (b) images of H1 cells at the four stages. (c) Typical biomarker immunostaining of OCT-4 and NANOG at the STEM, SOX17 and CXCR4 at the DE, and ALB and CK18 at the Pre-H or M-H stage. Bar = 50 μ m. (d) Related gene expressions of *OCT-4* and *NANOG* at the STEM, *BRA*, *FOXA2* and *SOX17* at the DE, and *ALB* and *AFP* at the Pre-H or M-H stage. (e-f) Histological and histochemical staining of glycogen synthesis (E) and ICG engulfment (F). Bar = 50 μ m.

Figure S7. Experimental procedures and optical liver images in mice. (a) Schematic of preparing the mice with CCl₄-induced liver injury and HLCs transplantation. (b) Optical liver images of WT mice, CCl₄-treated mice, and CCl₄-treated mice with transplanted control or Soft-P HLCs.

Figure S8. Distinct impacts of substrate topography and stiffness on pluripotency maintenance of hESCs at the Stem stage (a, b), differentiation stage-specific marker expression at the DE (c, d) and M-H stage (e, f). Relative fluorescent intensity (RFI) of two stemness biomarkers of OCT-4 (a) or NANOG (b) was quantified and presented as the mean \pm SE for > 64 clones. The RFI values of SOX17 (c) and CXCR4 (d) were quantified for > 30 fields of view (FOVs) in triplicate. Data are presented as the mean \pm SE of > 200 individual cells. The RFI values of ALB (e) and CK18 (f) were presented as the mean \pm SE for > 21 FOVs in triplicate. *, ** or ***, *P* < 0.05, 0.01 or 0.001 compared with the values between distinct topographies at same stiffness; #: *P* < 0.05 compared with the values between stiff and soft substrates in the respective configuration (two-way ANOVA).

Figure S9. Distinct impacts of substrate topography and stiffness on pluripotency maintenance of hESCs at the Stem stage (a, b), differentiation stage-specific marker expression at the DE (c, d) and M-H stage (e, f) by Immunoblotting. Two stemness biomarkers of OCT-4 (a) or NANOG (b) was quantified and presented as the mean \pm SE from five repeats. The values of SOX17 (c) and CXCR4 (d) were quantified from five repeats. Data are presented as the mean \pm SE. The values of ALB (e) and CK18 (f) were presented as the mean \pm SE for from ten repeats. *, ** or ***, *P* < 0.05, 0.01 or 0.001 compared with the values between distinct topographies at same stiffness; #: *P* < 0.05 compared with the values between stiff and soft substrates in the respective configuration (two-way ANOVA).

Name	Primer sequence
OCT-4	5'-GACAACAATGAAAATCTTCAGGAGA-3'
	5'-TTCTGGCGCCGGTTACAGAACCA-3'
NANOG	5'-AGCCTCTACTCTTCCTACCACC-3'
	5'-TCCAAAGCAGCCTCCAAGTC-3'
SOX17	TTCGTGTGCAAGCCTGAGAT
	TAATATACCGCGGAGCTGGC
CXCR4	AGTGATAAACACGAGGATGGCAAG
	TGTATATCTCCTCCCCAAGCG
BRA	5'-CCAGGTCCCGAAAGATG-3'
	5'-TGCCAAAGTTGCCAATAC-3'
FOXA2	5'-ACGACTGTTTCCTGAAGGT-3'
	5'-TTGAAGGCGTAGTGGTGT-3'
GATA6	5'-CCATGACTCCAACTTCCACC-3'
	5'-ACGGAGGACGTGACTTCGGC-3'
ALB	AGCCTTGGTGTTGATTGCCT
	CTCTGGTCTCACCAATCGGG
CK18	AAATCCGGGAGCACTTGGAG
	CAATCTGCAGAACGATGCGG
AFP	5'-TTACACAAAGAAAGCCCC-3'
	5'-TCCGATAATAATGTCAGCC-3'
GAPDH	5'-GGTGAAGGTCGGAGTCAACGGA-3'
	5'-GAGGGATCTCGCTCCTGGAAGA-3'
ACTIN	5'-TCACCACCGGCCGAGCG-3'
	5'-TCTCCTTCTGCATCCTGTCG-3'

Table S1. All the primer sequences and annealing temperatures for all the genes tested.

Source of Variation	STEM						DE						M-H					
	OCT-4			NANOG			SOX17		GATA		CXCR4		ALB		CK18			
	WES	IF	qPCR	WES	IF	qPCR	WES	IF	qPCR	WES	IF	qPCR	WES	IF	qPCR	WES	IF	qPCR
Stiffness	0.307	0.045	0.020	0.021	0.825	< 0.001	0.003	< 0.001	0.092	0.008	0.926	0.780	0.193	< 0.001	< 0.001	< 0.001	< 0.001	0.045
Topography	< 0.001	0.306	0.308	0.002	0.138	0.660	< 0.001	< 0.001	0.187	0.004	< 0.001	0.659	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.067
Stiffness ⊕ Topography	< 0.001	0.059	0.122	< 0.001	0.023	0.637	0.712	< 0.001	0.836	0.827	< 0.001	0.523	0.031	< 0.001	< 0.001	0.649	< 0.001	0.943

Table S2. Two Way ANOVA statistical tests for coupling impacts of substrate stiffness and topography[†].

[†]: Additional statistical data for any paired cases were not shown for clarity. For details, refer to Figs. 5 and 6 with a distinct normalization of the experimental data.

 \Box : *P* values estimated from Two Way ANOVA analysis.