Supporting Information

Open-air synthesis of oligo(ethylene glycol)-functionalized polypeptides from non-purified *N*-carboxyanhydrides

Zhengzhong Tan^{1,‡}, Ziyuan Song^{1,‡}, Tianrui Xue², Lining Zheng¹, Lei Jiang^{1,3}, Yunjiang Jiang¹, Zihuan Fu², Anh Nguyen⁴, Cecilia Leal¹, and Jianjun Cheng ^{1,2,5-7}*

¹ Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.

² Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.

³ State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.

⁴ Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.

⁵ Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.

⁶ Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.

⁷ Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.

⁺ These authors contributed equally; *Email: <u>jianjunc@illinois.edu</u>

Supporting Figures

Figure S1. FTIR study of partition of EG₃Glu NCA in water-in-oil emulsion (12% water). FTIR was performed on $CHCl_3$ phase before and at predetermined time intervals after water mixing. The dashed line indicates the characteristic peak of anhydride on NCA at 1788 cm⁻¹. The absorbance was used to quantify the amount of NCA in the CHCl₃ phase.

Figure S2. FTIR study of polymerization kinetics of EG₃Glu NCA in emulsion polymerization. The shadowed area indicates the decreasing of anhydride peaks during polymerization.

Figure S3. NMR study of polymerization kinetics of non-purified EG₃Glu-NCA in the biphasic system initiated by PZLL-NH₂ with (solid dot) and without CE catalysis (open dot).

Figure S4. GPC curves of PZLL initiator and PZLL-*b*-P(EG₃Glu) copolypeptides with different M/I ratio.

Figure S5. CD spectrum of PZLL₄₅-b-P(EG₃Glu)₅₀ in chloroform (0.1 mg/mL)

Figure S6. GPC curves of PBLG-initiator and resulting block copolypeptides PBLG-*b*-P(EG₃Glu). For the PBLG-*b*-P(EG₃Glu), Mn = 15.7 kDa, D = 1.17, DP (of EG₃Glu block) = 22.

Figure S7. GPC curves of PZLL-initiator and multiblock polypeptides. Diblock: PZLL-*b*-P(EG₃Glu); triblock: PZLL-*b*-P(EG₃Glu)-*b*-PBLG; tetrablock PZLL-*b*-P(EG₃Glu)-*b*-PBLG-*b*-P(EG₃Glu).

Figure S8. TEM images of PZLL₄₅-*b*-P(EG₃Glu)₁₅₀ (left) and PZLL₄₅-*b*-P(EG₃Glu)₁₀₀ (right).

Figure S9. Cryo-TEM images of PZLL₄₅-*b*-P(EG₃Glu)₁₅₀ nanoparticles.

Figure S10. DLS study of nanoparticle formed by multiblock copolypeptides.

Figure S11. Serum stability study of PZLL₄₅-*b*-P(EG₃Glu)₅₀ (left) and PZLL₄₅-*b*-P(EG₃Glu)₁₀₀ (right) nanoparticles.

Figure S12. The cumulative release of PTX from PTX-loaded $PZLL_{45}$ -*b*-P(EG₃Glu)₁₀₀ nanoparticle and. Error bar represents the standard deviation from three independent tests.

Figure S13. FTIR spectra of EG₃Glu-NCA.

NMR Spectra

Figure S14. ¹H-NMR of EG₃Glu.

Figure S15. ¹H-NMR of EG₃Glu-NCA.

Figure S16. ¹H-NMR of PZLL-*b*-P(EG₃Glu).

Figure S17. ¹H-NMR of PBLG-*b*-P(EG₃Glu).

Figure S18. ¹H-NMR of PZLL-*b*-P(EG₃Glu)-*b*-PBLG-*b*-P(EG₃Glu).