Electronic Supplementary Information

Encapsulating an acid-activatable phthalocyanine-doxorubicin conjugate and the hypoxia-

sensitive tirapazamine in polymeric micelles for multimodal cancer therapy

Xuejiao Guo,^{a,b} Honglin Jin^c and Pui-Chi Lo*^{a,b}

- ^a Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China. E-mail: gigi.lo@cityu.edu.hk
- ^b Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
- ^c Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China

Contents

- Fig. S1 ¹H NMR spectrum of **2** in CDCl₃ with a trace amount of pyridine- d_5 .
- Fig. S2 ${}^{13}C{}^{1}H$ NMR spectrum of **2** in CDCl₃ with a trace amount of pyridine-d₅.
- Fig. S3 ESI mass spectrum of **2**.
- Fig. S4 ¹H NMR spectrum of **3** in CDCl₃ with a trace amount of pyridine- d_5 .
- Fig. S5 ${}^{13}C{}^{1}H$ NMR spectrum of **3** in CDCl₃ with a trace amount of pyridine-d₅.
- Fig. S6 ESI mass spectrum of **3**.
- Fig. S7 (a) HPLC chromatograph and (b) ESI mass spectrum of ZnPc-Dox.
- Fig. S8 Electronic absorption spectra of (a) ZnPc-Dox and (b) **3** at different concentrations in DMF.
- Fig. S9 Fluorescence spectra of ZnPc-Dox (1 μ M) in DMF (λ_{ex} = 490 or 610 nm).
- Fig. S10 Fluorescence spectra of **3** and ZnPc-Dox (both at 1 μ M) in DMF ($\lambda_{ex} = 610$ nm).
- Fig. S11 Fluorescence spectra of ZnPc-Dox and Dox (both at 1 μ M) in DMF ($\lambda_{ex} = 490$ nm).
- Fig. S12 (a) Electronic absorption and (b) fluorescence ($\lambda_{ex} = 610$ nm) spectra of **3** and ZnPc-Dox (both at 1 μ M) in PBS with 0.05% Tween 80.
- Fig. S13 Comparison of the rate of photoconversion of DPBF (initial concentration = 30 μ M) sensitised by **3** or ZnPc-Dox in DMF. The concentration of **3** and ZnPc-Dox was fixed at 1 μ M.
- Fig. S14 Comparison of the rate of photoconversion of DPBF (initial concentration = $30 \mu M$) sensitised by ZnPc-Dox (1 μM) upon incubation in a phosphate solution at different pH with 0.05% Tween 80 for 24 h. The concentration of ZnPc-Dox was fixed at 1 μM in all cases.

- Fig. S15 Change in the fluorescence intensity of Dox during incubation of ZnPc-Dox (1 μ M) in a phosphate solution at different pH with 0.05% Tween 80 at 37 °C over a period of 72 h ($\lambda_{ex} = 490$ nm).
- Fig. S16 Change in the size of different micelles (a) in PBS at pH 7.4 at 4 °C and (b) in PBS containing FBS (10%, v/v) at 37 °C over a period of 7 days. Data are shown as the mean \pm SD (n = 3).
- Fig. S17 Release profiles of (a) TPZ and (b) ZnPc-Dox from ZnPc-Dox/TPZ@micelles ([ZnPc-Dox] = 100μ M) in PBS at different pH at 37 °C over a period of 72 h.
- Fig. S18 Bright-field and fluorescence images of HT29 cells after incubation with ZnPc-Dox, 3@micelles, ZnPc-Dox@micelles and ZnPc-Dox/TPZ@micelles for 12 h. The cells were then stained with the hypoxia probe (0.5 μ M) and the oxidative stress detection probe (1 μ M) for 30 min and Hoechst 33342 (10 μ g mL⁻¹) for 10 min in the absence of light irradiation. The concentration of ZnPc was fixed at 1 μ M in all cases. Scale bar = 20 μ m.
- Fig. S19 Cytotoxicity of TPZ on HT29 cells after incubation for 12 h under a normoxic (20% oxygen) or hypoxic condition (2% oxygen). Data are expressed as the mean ± SEM of three independent experiments, each performed in quadruplicate.
- Fig. S20 H&E staining images of different organs and tumour slices in the mice after different treatments. Scale bar = $100 \mu m$.
- Table S1Electronic absorption and photophysical data for 3 and ZnPc-Dox in DMF.

Fig. S1 ¹H NMR spectrum of 2 in CDCl₃ with a trace amount of pyridine- d_5 .

Fig. S2 ${}^{13}C{}^{1}H$ NMR spectrum of 2 in CDCl₃ with a trace amount of pyridine-d₅.

Molecular formula :	$C_{52}H_{54}N_8O_{12}Zn$
Experimental Mass [M+Na] ⁺ :	1069.30494
Theoretical Mass [M+Na] ⁺ :	1069.30449
Error (ppm) :	0.4

aqkpn532_200901092022 #322-356 RT: 1.43-1.59 AV: 35 SB: 49 0.01-0.22 NL: 4.06E7 T: FTMS + p ESI Full ms [200.0000-1500.0000]

Fig. S3 ESI mass spectrum of 2.

Fig. S4 ¹H NMR spectrum of 3 in CDCl₃ with a trace amount of pyridine- d_5 .

Fig. S5 ${}^{13}C{}^{1}H$ NMR spectrum of 3 in CDCl₃ with a trace amount of pyridine-d₅.

aqkpn546_201208114204 #208-222 RT: 0.93-0.99 AV: 15 SB: 49 0.01-0.22 NL: 1.44E8 T: FTMS + p ESI Full ms [150.0000-1500.0000]

Fig. S6 ESI mass spectrum of 3.

(b)

(a)

Molecular formula :	C ₇₇ H ₇₉ N ₁₁ O ₂₁ Zn	
Monoisotopic Experimental Mass [M+H] ⁺ , [M+2H] ²⁺ :	1558.48194, 779.74458	
Monoisotopic Theoretical Mass [M+H] ⁺ , [M+2H] ²⁺ :	1558.48162, 779.74445	
Error (ppm) :	0.2, 0.2	

Fig. S7 (a) HPLC chromatograph and (b) ESI mass spectrum of ZnPc-Dox.

Fig. S8 Electronic absorption spectra of (a) ZnPc-Dox and (b) **3** at different concentrations in DMF. The inset of each figures plots the absorbance at 690 nm versus the concentration of ZnPc-Dox or **3**.

Fig. S9 Fluorescence spectra of ZnPc-Dox (1 μ M) in DMF (λ_{ex} = 490 or 610 nm).

Fig. S10 Fluorescence spectra of 3 and ZnPc-Dox (both at 1 μ M) in DMF ($\lambda_{ex} = 610$ nm).

Fig. S11 Fluorescence spectra of ZnPc-Dox and Dox (both at 1 μ M) in DMF (λ_{ex} = 490 nm).

Fig. S12 (a) Electronic absorption and (b) fluorescence ($\lambda_{ex} = 610 \text{ nm}$) spectra of 3 and ZnPc-Dox (both at 1 μ M) in PBS with 0.05% Tween 80.

Fig. S13 Comparison of the rate of photoconversion of DPBF (initial concentration = 30 μ M) sensitised by 3 or ZnPc-Dox in DMF. The concentration of 3 and ZnPc-Dox was fixed at 1 μ M.

Fig. S14 Comparison of the rate of photoconversion of DPBF (initial concentration = 30 μ M) sensitised by ZnPc-Dox (1 μ M) upon incubation in a phosphate solution at different pH with 0.05% Tween 80 for 24 h. The concentration of ZnPc-Dox was fixed at 1 μ M in all cases.

Fig. S15 Change in the fluorescence intensity of Dox during incubation of ZnPc-Dox (1 μ M) in a phosphate solution at different pH with 0.05% Tween 80 at 37 °C over a period of 72 h (λ_{ex} = 490 nm).

Fig. S16 Change in the size of different micelles (a) in PBS at pH 7.4 at 4 °C and (b) in PBS containing FBS (10%, v/v) at 37 °C over a period of 7 days. Data are shown as the mean \pm SD (n = 3).

Fig. S17 Release profiles of (a) TPZ and (b) ZnPc-Dox from ZnPc-Dox/TPZ@micelles ([ZnPc-Dox] = 100μ M) in PBS at different pH at 37 °C over a period of 72 h

Fig. S18 Bright-field and fluorescence images of HT29 cells after incubation with ZnPc-Dox, 3@micelles, ZnPc-Dox@micelles and ZnPc-Dox/TPZ@micelles for 12 h. The cells were then stained with the hypoxia probe (0.5 μ M) and the oxidative stress detection probe (1 μ M) for 30 min and Hoechst 33342 (10 μ g mL⁻¹) for 10 min in the absence of light irradiation. The concentration of ZnPc was fixed at 1 μ M in all cases. Scale bar = 10 μ m.

Fig. S19 Cytotoxicity of TPZ on HT29 cells after incubation for 12 h under a normoxic (20% oxygen) or hypoxic condition (2% oxygen). Data are expressed as the mean \pm SEM of three independent experiments, each performed in quadruplicate.

Fig. S20 H&E staining images of different organs and tumour slices in the mice after different treatments. Scale bar = $100 \mu m$.

Compound	$\lambda_{abs} (nm) (\log \epsilon)$	$\lambda_{em} \left(nm \right)^{a}$	${\pmb \Phi}_{_{ m F}}^{^{ m b}}$	${\varPhi^{\mathrm{c}}_{\!\!\!\Delta}}$
3	340 (4.73), 625 (4.51), 690 (5.23)	710	0.15	0.43
ZnPc-Dox	340 (4.69), 500 (4.27), 625 (4.42), 690 (5.01)	710	0.12	0.35

 Table S1 Electronic absorption and photophysical data for 3 and ZnPc-Dox in DMF.

^a Excited at 610 nm. ^b Relative to unsubstituted ZnPc in DMF ($\Phi_F = 0.28$). ^c Relative to unsubstituted ZnPc ($\Phi_{\Delta} = 0.56$).