Supplementary information

Cytosolic delivery of gadolinium via photoporation enables improved *in vivo* magnetic resonance imaging of cancer cells

Aranit Harizaj¹, Benedicte Descamps², Christophe Mangodt³, Stephan Stremersch¹, Arianna Stoppa¹, Lieve Balcaen⁴, Toon Brans¹, Hilde de Rooster⁵, Nausikaa Devriendt⁵, Juan C. Fraire¹, Eduardo Bolea-Fernandez⁴, Olivier De Wever⁶, Wouter Willaert⁷, Frank Vanhaecke⁴, Christian V. Stevens³, Stefaan C. De Smedt¹, Bart Roman³, Christian Vanhove², Ine Lentacker¹, Kevin Braeckmans^{1,*}

- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Science, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
- Infinity lab, Faculty of Engineering and Architecture, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
- Bioresources and Bioorganic Chemistry, Faculty of Bioscience engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- Atomic & Mass Spectrometry- A&MS research unit, Faculty of Science, Ghent University, Krijgslaan 281, S12, 9000 Ghent, Belgium

- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Laboratory Experimental Cancer Research, Faculty of Medicine and Health Science, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
- Laboratory for Experimental Surgery, Faculty of Medicine and Health Science, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium

*Corresponding author: <u>Kevin.Braeckmans@UGent.be</u>

Figure S1. (a-c) Scanning electron microscopy images of PDDAC coated AuNPs. The images were analyzed via the ImageJ software. (panel a: scale bar = 500 nm, panel b-c: scale bar 100 nm). (d) Corresponding histogram showing the size distribution of PDDAC-coated AuNPs.

Figure S2. (a-b) In vitro scratch assay to verify the migratory capacity of (a) untreated control SK-OV-3 IP1 cells compared to (b) SK-OV-3 IP1 cells photoporated with 100 mM gadobutrol (scale bar = $50 \ \mu m$). The images were analyzed via the ImageJ software.

Figure S3. *In vitro* T_1 -weighted image showing the detection limit of gadobutrol-labeled SK-OV-3 IP1 cells as measured via MRI. False-colored T_1 -weighted images of a decreasing amount of gadobutrol-labeled SK-OV-3 IP1 cells with the control in the upper left corner.

Au samples	Au concentration	SD
	(µg L⁻¹)	(µg L⁻¹)
Control 1 – C1	0.26	0.01
Control 2 – C2	0.38	0.02
Control 3 – C3	0.16	0.01
Average	0.27	0.11
Gold incubation – Au-1	10.48	0.04
Gold incubation – Au-2	10.80	0.08
Gold incubation – Au-3	11.16	0.08
Average	10.81	0.34
Gold photoporation – Au+L-1	9.79	0.04
Gold photoporation – Au+L-2	9.21	0.03
Gold photoporation – Au+L-3	8.92	0.05
Average	9.31	0.44

Table S1. Determination of the concentration of Au in SK-OV-3 IP1 cells as obtained via ICP-MS analysis. Thetotal volume of samples: 100 μ L, total amount of seeded cells: 20.000 cells.