Supporting Information

ELECTRICAL STIMULATION OF NEURAL-DIFFERENTIATING iPSCs ON NOVEL COAXIAL ELECTROCONDUCTIVE NANOFIBERS

Fábio F. F. Garrudo,^{a,b,c,d,*} Diogo E. S. Nogueira,^{b,c} Carlos A. V. Rodrigues,^{b,c} Flávio A. Ferreira, ^{b,c} Patrizia Paradiso,^e Rogério Colaço,^e Ana C. Marques,^f Joaquim M. S. Cabral,^{b,c} Jorge Morgado,^d Robert J. Linhardt,^{a,*} Frederico Castelo Ferreira,^{b,c,*}

^a Department of Chemistry and Chemical Biology, Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY, 12180, USA.

^b Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.

c Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

^e Department of Bioengineering and Instituto de Telecomunicações, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001, Lisboa, Portugal.
 ^e IDMEC - Instituto de Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa, Portugal
 ^f CERENA, DEQ, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, P-1049-001 Lisboa, Portugal.

Supplementary	Summary							
display item	Summary	Faye						
Table S1	Composition of the solutions used for electrospinning	2						
Table S2	Primer sequences used used for SYBR® Green chemistry based	2						
Table 52	qPCR.	3						
Table S3	Compilation of the melting/crystallization temperatures obtained in							
Table 55	the thermograms for the samples tested.							
Table S4	Fiber diameter change across samples from the lipase stability	5						
	assay.	5						
Table S5	Table S5Fiber diameter change across samples from the PBS stability assay.							
Figure S1 Thermograms of all the DSC cycles for the samples tested.								
Figure S2 Contact angle images (glycerol).								
Figure S3	Figure S3 SEM images for the fibers tested in the biodegradability assay.							
Figure S4	Figure S4 FTIR spectra of the fibers tested in the lipase stability assay.							
Figure S5	FTIR spectra of the fibers tested in the PBS stability assay.	11						
Eiguro S6	Flow cytometry results for iPSCs and after 12 and 17 days of neural							
Figure 30	induction.							
Figure S7	IF images of Neurons (day 47) differentiated on a cell culture plate.	13						
Figure S8	SEM and Immunofluorescence images of Neurons differentiated for							
i igure oo	15 days on the different electrospun fibers tested.							
Figure SQ	qPCR analysis comparison of Neurons differentiated on the different							
r igure 09	electrospun fibers for 15 (day 30) and 30 (day 47) days.							
Figure S10	SEM images of Neurons differentiated for 30 days on PGS/PCL-	16						
rigule 010	PANI fibers with electrical stimulation.							

Solution	PANI (mg)	CSA (mg)	PCL (g)	PGS (g)	TFE (mL)	HFP (mL)
PCL	-	-	1.3	-	5	5
PCL-PANI	68	87	1.3	-	5	5
PGS	-	-	-	8.0	-	10

Table S1: Composition of the solutions used in this work for fiber production.

Table S2: Primer sequences used for SYBR® Green chemistry based qPCR ((*) means sequences used from Paşca and colleagues^[43], (+) means sequences used from Silva and colleagues^[58]).

Canaa	FORWARD PRIMER SEQUENCE	REVERSE PRIMER SEQUENCE			
Genes	(5' – 3')	(5' – 3')			
GAPDH(+)	GAGTCAACGGATTTGGTCGT	TTGATTTTGGAGGGATCTCG			
OCT4	GGTCCTTGTGCAGTACTCAGG	CTGGCATAGACGTGAAGAAGC			
SOX2	ACCTACAGCATGTCCTACTCG	CTGGGACATGTGAAGTCTGCT			
NESTIN	GGACAAGAGAACCTGGAAACAC	TTTCCTTGTCTACCTCCTCTGG			
PAX6 (*)	ATGTGTGAGTAAAATTCTGGGCA	GCTTACAACTTCTGGAGTCGCTA			
TBR2 (*)	CGCCACCAAACTGAGATGAT	CACATTGTAGTGGGCAGTGG			
TBR1	GATCCGAGCTTGTCTTGCAC	AAACTGTGACGAAGCTCAGAGAC			
DCX	CCTTGGCTAGCAGCAACAGT	GACAACCCCGGTCTCCAGTT			
TUBB3	AGCGGATCAGCGTCTACTAC	CAGGCAGTCGCAGTTTTCAC			
NEF-L	TACTCGACCTCCTACAAGCGG	CAGACTGGGCATCAACGATCC			
NEF-M	CGAAAGCCACTCAGACCAGAAT	CGGTACTCGGCGATCTCTTCC			
NEF-H	CCCCTGCAGACAAATTCCCTG	GGGCTCTTTGACTTTCACCT			
MAP2	CAGGGAAGAGTGGTACCTCAAC	CAGGAGATTTTGGAGGAGTACG			
Tau	GATGGAAGATCACGCTGGGAC	CAGCAGCTTCGTCTTCCAGG			
NCAM	GGATGGCAGTGAGTCAGAGG	CCGGATCTGCAGGTAGTTGT			
NEUN	CTGAGATTTATGGAGGCTACGC	CATGGTTCCAATGCTGTAGGTC			
SYN	GCCAACAAGACCGAGAGTGAC	GAAGATGTAGGTGGCCAGAGC			
VGLUT1	CACTCTAAACATGCTGATCCCC	AACCACAAAAGGCTGTCGTC			
VGLUT2	TGGTACTTGCAGTGGGATTCAG	GCAGCGATCAGGAAGACATACT			
GAD67	CAAGTTCTGGCTGATGTGGA	CCCTGAGGCTTTGTGGAATA			
VGAT	CACGACAAGCCCAAAATCACG	CTCGCCGTCTTCATTCTCCTC			
TH	GGAAGGCCGTGCTAAACCT	GTGGATTTTGGCTTCAAACG			
DRD2	ATCCTGAACTTGTGTGCCATCA	CGTTCTGGTCTGCGTTATTGAG			
CACNA1C	GTACAAAGACGGGGAGGTTGAC	GTAGTTGTAGATGGGGCCCTTG			
SCN1a	TTGTGACGCTTAGCCTGGTAG	ACGATGATGGCCAAGACGAG			

Table S3: Compilation of the melting/crystallization temperatures obtained in the thermograms for PCL-PANI, PGS raw material and PGS/PCL-PANI fibers (5 °C min⁻¹, -30 to 100/400 °C).

	Heating						Cooling / Degradation														
Sample	Cycle #	Peak (° C)	∆Hm (Jg⁻¹)	Peak (° C)	∆Hm (J g⁻¹)	Peak (° C)	ΔHm (Jg⁻¹)	Peak (° C)	∆Hm (Jg⁻¹)	Peak (° C)	ΔHm (Jg⁻¹)	Peak (° C)	∆Hm (Jg⁻¹)	Peak (° C)	ΔHm (J g⁻¹)	Peak (° C)	∆Hm (J g⁻¹)	Peak (° C)	ΔHm (Jg⁻¹)	Peak (° C)	ΔHm (J g ⁻¹)
z	Cycle 1	-8.1	-0.961	-	-	-	-	35.1	-0.371	60.5	- 89.820	36.9	68.81	-	-	-	-	-	-	-	-
CL-PA	Cycle 2	-	-		-	-	-	-	-	58.6	- 60.920	36.9	69.79	_		-	-	-	-	-	-
ă	Cycle 3	-	-	-	-	-	-	-	-	58.4	- 67.610	155.3	Exoth ermic	-	-	350.9	Exothe rmic	378.2	Exothe rmic	-	-
3 =	Cycle 1	-13.5	-0.995	4.1	- 29.38	17.7	-6.104	-	-	-	-	-	-	-	-	-13.4	44.72	-	-	-	-
GS ra nateria	Cycle 2	-10.6	-1.202	7.0	- 24.38	20.7	-6.354	-	-	-		-	-	-		-13.4	46.86	-	-	-	
₄ =	Cycle 3	-11.0	-1.735	7.0	- 25.45	20.6	-5.932	-	-	-	-	153.3	Exoth ermic	-	-	-	-	382.8	Exothe rmic	405.9	Exothe rmic
PANI	Cycle 1	-	-	3.8	- 14.25	18.5	-0.812	37.2	-3.630	57.1	- 18.390	28.0	18.98	-5.3	24.23	-	-	-	-	-	-
/PCL-I	Cycle 2	_	-	7.7	- 14.26	18.7	-2.124	31.6	-0.310	55.4	- 22.160	27.8	16.93	-6.3	22.57	-	-	-	-	-	-
PGS	Cycle 3	-	-	7.8	- 13.85	19.1	-1.907	31.7	-0.312	55.2	- 23.790	157.1	Exoth ermic	263.2	exother mic	-	-	385.6	Exothe rmic	409.5	Exothe rmic

Table S4: Fiber diameter changes across samples from the lipase stability assay (n = 100 measurements; (*) means p<0.05 compared to day 0; (+) means p<0.05 compared to 1h; (&) means p<0.05 compared to 4h; (\$) means p<0.05 compared to 8h; (\$) means p<0.05 compared to 12h).

Timepoints	PCL	Monoaxial	Coaxial
Day 0	397 ± 235	296 ± 93	951 ± 465
1h	1035 ± 315 ^(*)	581 ± 281 ^(*)	1489 ± 696 ^(*)
4h	688 ± 326 ^{(*) (+)}	587 ± 254 ^(*)	1135 ± 378 ⁽⁺⁾
8h	1335 ± 390 ^{(*) (+) (&)}	571 ± 229 ^(*)	1343 ± 591 ^(*)
12h	1153 ± 331 ^{(*) (&) (\$)}	503 ± 142 ^(*)	1728 ± 870 ^{(*) (&) (\$)}
24h	-	994 ± 491 ^{(*) (+) (&) (\$) (\$)}	1486 ± 668 ^{(*) (&)}
48h	-	$1045 \pm 346^{(*)} {}^{(+)} {}^{(\&)} {}^{(\$)} {}^{(\$)}$	1544 ± 698 ^{(*) (&)}
168h	-	1078 ± 427 (*) (+) (&) (\$) (§)	1704 ± 811 ^{(*) (&) (\$)}

Table S5: Fiber diameter changes across samples from the PBS stability assay (n = 100 measurements; (*) means p<0.05 compared to day 0; (+) means p<0.05 compared to day 4; (&) means p<0.05 compared to day 7; (\$) means p<0.05 compared to day 21).

Timepoints	PCL	Monoaxial	Coaxial
Day 0	397 ± 235	296 ± 93	951 ± 465
Day 4	891 ± 344 ^(*)	671 ± 319 ^(*)	2400 ± 1733 ^(*)
Day 7	794 ± 310 ^(*)	641 ± 273 ^(*)	1546 ± 941 ^{(*) (+)}
Day 14	783 ± 319 ^(*)	668 ± 292 ^(*)	2364 ± 1617 ^{(*) (&)}
Day 21	857 ± 359 ^(*)	755 ± 266 ^{(*) (&)}	1854 ± 1190 ^(*)
Day 28	879 ± 266 ^(*)	747 ± 418 ^(*)	2595 ± 1887 ^{(*) (&) (\$)}

Figure S1: Thermograms for PCL-PANI monoaxial fibers (**A**,**B**,**C**), PGS raw material (**D**,**E**,**F**), and PGS/PCL-PANI coaxial fibers (**G**,**H**,**I**). Sub-figures **A**, **D** and **G** correspond to the heating cycles, **B**, **E** and **H** to the cooling cycles and **C**, **F** and **I** to the last heating and cooling cycles where degradation occurs.

Figure S2: Contact angle images for (**A**) PCL, (**B**) PCL-PANI and (**C**) PGS/PCL-PANI electrospun fibers.

Figure S3: SEM images of fibers obtained at different timepoints of the biodegradability assay performed with lipase (0.5 U mL⁻¹) from *Aspergillus oryzae* (37 $^{\circ}$ C and 5 % CO₂).

Figure S4: FTIR spectra of the samples obtained during the stability assay with Lipase (0.5 U mL-1) from Aspergillus Oryzae (37 °C and 5 % CO2). (**A**) PCL, (**B**) PCL-PANI and (**C**) PGS/PCL-PANI (top to bottom) pristine sample (0h) and after incubation for 1 h, 4 h, 8 h, 12 h, 24 h, 48 h and 168 h.

Figure S5: FTIR spectra of (**A**1) PCL, (**A**2) PCL-PANI and (**A**3) PGS/PCL-PANI fibers, including (top to bottom) the initial samples and after incubation periods of 4, 7, 14, 21 and 28 days.

Figure S6: Initial characterization of iPSCs differentiating in iNPCs for 17 days on adherent plates. (**A**) FC profile for TRA-1-60 and SSEA-4 at day 0. (**B-D**) FC profile for OCT4 and SOX2 of iPSCs at day 0 (**B**), and differentiation days 12 (**C**) and 17 (**D**).

Figure S7: Immunofluorescence images of iNPCs after 30 days of differentiation on the culture tissue plate. Cells were stained for the neural marker Tuj1 and the neural stem cell marker Sox2, and were counter-stained with DAPI.

Figure S8: Morphological analysis and marker expression of iNPCs differentiated for 15 days on PCL, PCL-PANI and PGS/PCL-PANI fibers. SEM images, at various magnifications, (**A-C**). IF images for neural marker expression: Tuj1 (**D-F**), Map2 and Pax6 (**G-I**), and Syn (**J-L**), with DAPI as the counter-stain.

Figure S9: Overall neural markers profile of neurons differentiated for 15 and 30 days on PCL (**A**), PCL-PANI (**B**) and PGS/PCL-PANI (**C**) fibers by qPCR analysis ($\Delta\Delta$ Ct method and relative to cell on day 17): NES (neural progenitor cells), DCX and TUBB3 (neurons – early markers), MAP2, NEUN and NCAM (neurons – mature markers), GAD67 (GABAergic neurons), TH and DRD2 (dopaminergic neurons). (mean ± sem, n = 3).

Figure S10: SEM images (**A**, **B**, **C**), and respective close-ups (**A1**, **B1**, **C1**), of neurons differentiated for 30 days on PGS/PCL-PANI fibers under electrical stimulation.