Electric Supplementary Information

Stretch-Responsive Adhesive Microcapsules for Strain-Regulated Antibiotic Release from Fabric Wound Dressings

Yun Kee Jo, Su-Jin Heo, Ana P. Peredo, Robert L. Mauck*, George R. Dodge* and Daeyeon Lee*

*E-mail: daeyeon@seas.upenn.edu

Table S1. Adhesion strength of PDA-MAMCs at different concentration of PDA coating to porcine skin and a plastic surface ($n \ge 4$).

Substrate	1 mg/ml PDA	10 mg/ml PDA
Porcine skin	$633 \pm 106 \text{ g}$	$689 \pm 93 \text{ g}$
Plastic	510 ± 77 g	$608 \pm 109 g$

Fig. S1 Size distribution of MAMCs.

Increase of PDA concentration

Fig. S2 Optimal images of MAMCs before and after PDA coating. The brown color becomes darker with the increase of the concentration of PDA.

Fig. S3 (A) Thickness of PDA coating layer, PLGA film and PDA-coated PLGA film measured by ellipsometry. (B) Confocal microscopy image of the PDA-MAMCs with labeled PDA coating layer (green). To clearly visualize the PDA layer, non-labeled BSA is used as the aqueous core. (C) Confocal microscopy image of the PDA-MAMCs with labeled PLGA shells (red) used for mechano-activation analyses (% Full > 95). To accurately quantify the percentage of full microcapsules, fluorescent BSA (green) is encapsulated into the PDA-MAMC with nonlabeled PDA coating layer.

Fig. S4 Measurement of adhesion strength of PDA-MAMCs. Schematic illustration of (A) the centrifuge method for measurement of adhesion strength and (B) the custom-designed substrate-holding block. β , the angle of the centrifuge tube; h, the height of sample in the centrifuge tube; r, the radial diameter of the samples; r_{max} , the maximum radial diameter of the centrifuge tube.

Fig. S5 Adhesiveness of PDA-MAMCs at different concentration of PDA coating. (A) Images showing adhesion of microcapsules to porcine skin and a plastic surface. (B, C) Microcapsule detachment profiles from (B) porcine skin and (C) a plastic surface as a function of centrifugal force ($n \ge 4$ specimens, ***p<0.005, **p<0.01, *p<0.05; Kolmogorov-Smirnov test).

Fig. S6 Adhesion of PDA-MAMCs on the fabric dressing. (A) Images showing adhesion of MAMCs and PDA-MAMCs on a gauze. (B) Microcapsule detachment profiles from the gauze at different centrifugal forces ($n \ge 4$ specimens; ***p<0.005, **p<0.01, *p<0.05; Kolmogorov-Smirnov test).

Fig. S7 Experimental setup of a custom-built micromechanical tester.

Fig. S8 (A) Photographs of a gauze before and after application of tensile strain. (B) Strain–stress curve of the gauze upon uniaxial stretching with 10% stepwise increments at a strain rate of 1%/s.

Fig. S9 Stretch-induced mechano-activation of PDA-MAMCs in the fibrous matrix of gauze. SEM images of the gauze loaded with pseudo-red-colored microcapsules before and after stretching.

Fig. S10 Released CIF from the CIF@PDA-MAMCs-laden gauze immediately (0 h) after or 24 h after rupture induced by stretching with tensile strains of 20% and 50% ($n \ge 500$ microcapsules/loading regimen/type, 4 specimens/loading regimen/type).