Supporting information

Biosafety, Self-Adhesive, Recyclable, Tough, and Conductive Hydrogels for Multifunctional Sensor

Ling Fan¹, Lizhen Hu², Jinliang Xie¹, Zhongjie He¹, Yaping Zheng^{*1}, DaiXu Wei^{*3}, Dongdong Yao¹, Sufangfang¹

¹ School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an, Shaanxi 710072, P. R. China, Telephone and fax numbers: +86-029-88431688

- ² School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P.R. China.
- ³ Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
- * Corresponding authors. E-mail: <u>zhengyp@nwpu.edu.cn</u> (Y.P. Zheng), weidaixu@nwu.edu.cn (D.X. Wei)

Samples	Concentration	Concentration	Concentration	Concentration	Concentration of
	of SA-	of Borax	of PVA	of AgNW	SA (wt.%)
	DOPA	(wt.%)	(wt.%)	(wt.%)	
	(wt.%)				
1	0	0.22	11	0.11	0
2	0.22	0.22	11	0.11	0
3	0.33	0.22	11	0.11	0
4	0.33	0.33	11	0.11	0
5	0.33	0.44	11	0.11	0
6	0.22	0.33	11	0.11	0
7	0.22	0.44	11	0.11	0

 Table S1 Hydrogel samples of different components and concentrations.

8	0	0.44	11	0.11	0.33	

Table S2 Estimated toughness, adhesion, elongation at break, and tensile stress strength

 of various conductive hydrogel-based or PDA-based strain sensors at room

 temperature.

	Toughness	Adhesion	Elongation	Tensile	Ref.
	(MJ/m^3)		at break (%)	stress	
				(MPa)	
This work	55.3	YES	500	0.289	
PVA-CNF	5.25	NO	660	2.1	Ref. ¹
TA-PVA	395.2	NO	404	104.2	Ref. ²
Cellulose/PVA		NO	737	0.0374	Ref. ³
PVA/PEI		NO	500	0.6	Ref. ⁴
PDA-clay-PSBMA		YES	900	0.09	Ref. ⁵
DNA/DEX-g-DOPA	Very weak	YES	Too soft	Too soft	Ref. ⁶
PVA-PDA	Very weak	YES	400	<0.6×10 ⁻³	Ref. ⁷
PVA-FSWCNT-	Too soft	YES	Too soft	Too soft	Ref. ⁸
PDA					
PDA-talc-PAM	Very weak	YES	1500	25×10-3	Ref. ⁹
OHGel		NO	1700	0.197	Ref. ¹⁰
Hydrogel diodes	weak	YES	130	0.05	Ref. ¹¹

Table S3	The con	nductivity	of the	different	hydrogels

Samples	Conductivity/S.m ⁻¹
PB	0.039
PS _{0.22%} B	0.073
PS _{0.22%} AB	0.094
PS _{0.33%} AB	0.238
Recycled-1	0.245

Recycled-2	0.242
Recycled-3	0.237
Recycled-4	0.235

Figure S1 (a) General synthesis of SA–DOPA conjugates via EDC/NHS coupling; (b) ¹HNMR spectrum of SA-DOPA and SA.

Figure S2 (a) FT-IR spectra of SA-DOPA and SA. The presence of C–N bond at 1120 cm⁻¹ indicated that SA-DOPA was successfully synthesized. (b) UV-Vis spectra of SA-DOPA and SA. The strong absorption peak at 279 nm indicated the presence of catechol group, while the normal SA had no significant absorption at 279 nm.

Figure S3 EDS-mapping of Ag in PS_{0.33%}AB_{0.44%} hydrogel

Figure S4 Strain sweep measurement of the PSAB hydrogel at 25 °C (storage modulus G' and loss modulus G' as a function of strain γ).

References

1. Ye, Y.; Zhang, Y.; Chen, Y.; Han, X.; Jiang, F., Cellulose Nanofibrils Enhanced, Strong, Stretchable, Freezing-Tolerant Ionic Conductive Organohydrogel for Multi-Functional Sensors. *Advanced Functional Materials* **2020**, *30* (15), 2003430.

Wenwen, N.; Youliang, Z.; Rui, W.; Zhongyuan, L.; Xiaokong, L.; Junqi, S., Remalleable, Healable, and Highly Sustainable Supramolecular Polymeric Materials Combining Superhigh Strength and Ultrahigh Toughness. *Acs Applied Materials & Interfaces* 2020, 12(27), 30805.

3. Wang, Y.; Zhang, L.; Lu, A., Highly stretchable, transparent cellulose/PVA composite hydrogel for multiple sensing and triboelectric nanogenerators. *Journal of Materials Chemistry A* **2020**, 8(28), 13935

- Wang, C.; Hu, K.; Zhao, C.; Zou, Y.; Liu, Y.; Qu, X.; Jiang, D.; Li,
 Z.; Zhang, M.-R.; Li, Z., Customization of Conductive Elastomer Based on PVA/PEI
 for Stretchable Sensors. *Small* 2020, *16* (7), 1904758.
- 5. Pei, X.; Zhang, H.; Zhou, Y.; Zhou, L.; Fu, J., Stretchable, self-healing and tissue-adhesive zwitterionic hydrogels as strain sensors for wireless monitoring of organ motions. *Materials Horizons* **2020**,7(7),1872.
- Han, J.; Cui, Y.; Han, X.; Liang, C.; Liu, W.; Luo, D.; Yang, D., Super-Soft DNA/Dopamine-Grafted-Dextran Hydrogel as Dynamic Wire for Electric Circuits Switched by a Microbial Metabolism Process. *Advanced Science* 2020, *7*(13), 2000684.
- Liu, S.; Zheng, R.; Chen, S.; Wu, Y.; Liu, H.; Wang, P.; Deng, Z.; Liu, L., A compliant, self-adhesive and self-healing wearable hydrogel as epidermal strain sensor. *Journal of Materials Chemistry C* 2018, 6 (15), 4183.
- Liao, M. H.; Wan, P. B.; Wen, J. R.; Gong, M.; Wu, X. X.; Wang, Y. G.; Shi, R.; Zhang, L. Q., Wearable, Healable, and Adhesive Epidermal Sensors Assembled from Mussel-Inspired Conductive Hybrid Hydrogel Framework. *Advanced Functional Materials* 2017, *27* (48), 1703852.
- Chen, T.; Chen, Y. J.; Rehman, H. U.; Chen, Z.; Yang, Z.; Wang, M.; Li,
 H.; Liu, H. Z., Ultratough, Self-Healing, and Tissue-Adhesive Hydrogel for Wound
 Dressing. Acs Applied Materials & Interfaces 2018, 10 (39), 33523.
- 10. Xie, W. K.; Duan, J. J.; Wang, H.; Li, J.; Liu, R.; Yu, B. Y.; Liu, S. Y.; Zhou, J., Ultra- stretchable, bio- inspired ionic skins that work stably in various harsh environments. *Journal of Materials Chemistry A* **2018**, *6* (47), 24114.
- Duan, J.; Xie, W.; Yang, P.; Li, J.; Xue, G.; Chen, Q.; Yu, B.; Liu, R.; Zhou, J., Tough hydrogel diodes with tunable interfacial adhesion for safe and durable wearable batteries. *Nano Energy* 2018, *48*, 569.