Supporting information

Magnetic and radio-labeled bio-hybrid scaffolds to promote and track in vivo the progress of bone regeneration

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Elisabetta Campodoni^{a*}, Marisela Velez^{b*}, Eirini Fragogeorgi^{c,d}, Irene Morales^{e,f}, Patricia de la Presa^{e,f}, Dimitri Stanicki^g, Samuele M. Dozio^{a,h}, Stavros Xanthopoulos^c, Penelope Bouziotis^c, Eleftheria Dermisiadou^d, Maritina Rouchota^d, George Loudos^{c,d}, Pilar Marín^{e,f}, Sophie Laurent^{g,i}, Sébastien Boutry^{g,i}, Silvia Panseri^a, Monica Montesi^a, Anna Tampieri^a, Monica Sandri^{a*}

LIST OF ACRONYMS:

ACRONYM	DESCRIPTION			
SPECT	Single Photon Emission Computed Tomography			
СТ	Computed tomography scan			
MRI	Magnetic Resonance Imaging			
[^{99m} Tc]Tc-MDP	Technetium (99mTc) medronic acid, a commercial radiotracer			
TEPSA	3-(Triethoxysilyl)propylsuccinic anhydride			
SPIONs	Superparamagnetic iron oxide nanoparticles			
TEPSA-SPIONs	Superparamagnetic iron oxide nanoparticles coated with TEPSA			

nMNPs	Naked SPIONs		
MNPs	TEPSA-SPIONs activated by EDC/sulfo-NHS coupling		
HyS	Hybrid scaffold obtained thorough the biomineralization process in which hydroxyapatite is nucleated on collagen fibers		
(nMNPs)HyS	Hybrid scaffold functionalized with naked SPIONs before biomineralization process		
(MNPs)HyS	Hybrid scaffold functionalized with activated TEPSA-SPIONs before biomineralization process		
Hy(nMNPs)S	Hybrid scaffold functionalized with naked SPIONs during biomineralization process		
Hy(MNPs)S	Hybrid scaffold functionalized with activated TEPSA-SPIONs during biomineralization process		
HyS(nMNPs)	Hybrid scaffold functionalized with naked SPIONs after biomineralization process		
HyS(MNPs)	Hybrid scaffold functionalized with activated TEPSA-SPIONs after biomineralization process		

^{a.} Institute of Science and Technology for Ceramics-National Research Council (CNR), Faenza, Italy.

- ^{b.} Instituto de Catálisis y Petroleoquímica (CSIC), Madrid, Spain.
- ^{c.} National Center for Scientific Research (NCSR) "Demokritos", Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, Ag. Paraskevi-Athens, Greece
- ^{d.} BIOEMTECH, Lefkippos Attica Technology Park, NCSR "Demokritos", Ag. Paraskevi-Athens, Greece
- e. Instituto de Magnetismo Aplicado (UCM-ADIF-CSIC), A6 22, Las Rozas, 28260, Spain
- ^{f.} Dpto Física de Materiales, UCM, Ciudad Universitaria, Madrid, 28040, Spain ^{g.} University of Mons, General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Lab, 7000 Mons, Belgium
- ^{h.} Institute of Solid-State Electronics, Vienna University of Technology, Vienna, Austria
- ¹ Center for Microscopy and Molecular Imaging, 6041 Charleroi, Belgium

†Electronic	Supplementary	Information	(ESI)	available.	See
DOI: 10.1039/x0xx00000x					

Figure S3. Image representing the third preparation condition in which the hybrid composite was previously prepared and subsequently soaked in a solution containing the naked nanoparticles (nMNPs). In this case the resulting scaffold was visibly inhomogeneous due to precipitation of nMNPs during drying.

Figure S2. ζ -Potential measurements vs pH of TEPSA-coated nanoparticles.

Figure S5. Normalized hysteresis loops at 5 K of the three samples. The inset shows a zoom at low field of samples Hy(MNPs)S and Hy(nMNPs)S

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 20xx

Figure S6. A) Chemical composition of the MNPs_3%; MNPs_1.5%; MNPs_0.75%; MNPs_0.37%; MNPs_0.075% obtained from ICP analysis; B) Thermal decomposition profile (TG) of the MNPs_3%; MNPs_1.5%; MNPs_0.75%; MNPs_0.37%; MNPs_0.075%, the weight loss in % of mass is used to determine the organic/inorganic ratio of the different samples; C)FTIR spectra of the MNPs_3%; MNPs_1.5%; MNPs_0.75%; MNPs_0.75%; MNPs_0.37%; MNPs_0.75%.

Figure S7. Scanning electron microscopy images of composites labeled with different amounts of MNPs (MNPs_3%; MNPs_1.5%; MNPs_0.75%; MNPs_0.37%; MNPs_0.075%).

Figure S8. Decrease of the signal intensity (as expressed as the ratio between the signal of the magnetic matrix and the signal of the unlabelled scoffold) for the Hy(MNPs)S scaffolds regarding to their iron content.

Scheme S1. Schematic illustration of a hypothesized mechanism about magnetic functionalization dependent on the presence of i) an activated shell (yellow ring) linking on the collagen surface (MNPs) or ii) naked nanoparticles (black core) being entrapped into collagen fibers during self-assembling of fibers (nMNPs).