Electronic Supplementary Material (ESI) for Biomaterials Science. This journal is © The Royal Society of Chemistry 2021

1

Supplementary Information

Design and fabrication of nanoengineered Pt electrodes by laser welded CNTs for electrochemical biosensing of cancer lymph nodes

- 4 Ashkan Zandi^{a,b}, Zahra Davari sh.^a, Fatemeh Shojaeian^{a,c}, S. M. Sadegh Mousavi-kiasary^a, Fereshteh Abbasvandi^{a,d},
- 5 Afsoon Zandi^e, Ali Gilani^a, Zohre Saghafi^a, Yasin Kordehlachin^a, Amir Mamdouh^a, Seyyed Hossein Miraghaie^a,
- 6 Meisam Hoseinyazdi^f, Mohammad Ali Khayamian^{a,b}, Robab Anbiaee^g, Mohammad Faranoush^{h,i}, Mohammad
 7 Abdolahad^{a,b,j}
- 8 a Nano Electronic Center of Excellence, Nano-bioelectronic Devices Lab., Cancer Electronics Research Group,
- 9 School of Electrical and Computer Eng., College of Engineering, University of Tehran, P.O. Box: 14395-515, Tehran,
- 10 Iran.
- 11 ^b Nano Electronic Center of Excellence, Nano-electronics and Thin Film Lab., School of Electrical and Computer
- 12 Eng., College of Engineering, University of Tehran, P.O. Box: 14395-515, Tehran, Iran.
- 13 ^c School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19615-1179, Tehran, Iran.
- ¹⁴ ^d ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. Box: 1517964311,
 ¹⁵ Tehran, Iran.
- 16 ^e Department of Otolaryngology, Head & Neck Surgery, Taleghani Hospital, Shahid Beheshti University of Medical
- 17 Sciences, P.O. Box: 19615-1179, Tehran, Iran.
- 18 ^fMedical Imaging Research Center, Shiraz University of Medical Sciences, P.O. BOX: 71348-14336, Shiraz, Iran.
- 19 ^g Department of Radiation Oncology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, P.O.
- 20 Box: 19615-1179, Tehran, Iran.
- 21 h Pediatric Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of
- 22 Medical Sciences, P.O. Box: 1996713883, Tehran, Iran.
- ¹ Cardio-Oncology Research Center, Rajaie Cardiovascuar Medical & Research Center, Iran University of Medical
 Sciences, P.O. Box: 1996911151, Tehran, Iran.
- 25 ^j School of Pharmacy, Tehran University of Medical Sciences, P.O. Box: 1416753955, Tehran, Iran.
- 26 *Correspondent authors: <u>m.abdolahad@ut.ac.ir</u>
- 27
- 28
- 29
- 30
- 31

33 The mechanisms of tumor invasion to LNs are still unclear. Recent research indicated metabolic shift from 34 hypoxia glycolysis toward FAO in cancer cells when they invade LNs¹. Hence, our diagnostic approach is 35 tracing FAO process by electrochemical recording the lipidic contents of the free and involved LNs.
26 Fundamental of FAO metabolic metabolic in the integration of the free and involved LNs.

36 Fundamentals of FAO metabolism of malignant cells in LNs were presented in figure S1. FAs consumption

37 by cancer cells could be done by either direct exogenous uptake from the nearby microenvironment or using

38 nutrients (such as glucose or glutamine) to synthesize de novo. Alterations in FA transport, de novo

39 lipogenesis, storage as lipid droplets (LDs), and β-oxidation to generate Adenosine Triphosphate (ATP) are

40 metabolisms of cancerous cells all known as lipidomic remodeling ^{2 3}.

41

42 43

Figure S1, Cancer cells obtain fatty acids (FAs) in two main ways, direct exogenous uptake and de novo lipogenesis
of them. There are different transporters that allow exogenous uptake of FAs from the surrounding microenvironment.
CD36, FATPs and FABPpm are the most important ones. Abbreviations: CD36, Cluster of Differentiation 36; ACSL1,
Acyl-CoA Synthetase Long-chain family member 1; CPT1, Carnitine Palmitoyltransferase 1; ACC, acetyl-CoA
carboxylase; TCA, Tricarboxylic Acid Cycle; LDL, Low-Density Lipoproteins; VLDL, Very Low-Density Lipoprotein;
ACLY, ATP-citrate lyase; FASN, fatty acid synthase; MUFAs, monounsaturated fatty acids; PUFAs, polyunsaturated
fatty acids.

- 52
- 53
- 54

Figure S2, Nyquist diagram. LDP response is a nyquist diagram which its equivalent circuit is of importance to 66 analyze the data. R_{CT} , charge transfer resistance, is the most important element of an equivalent circuit. R_S (solution 67 resistance), C (double layer capacitance), and Warburg (diffusion element) are the other elements of the equivalent 68 circuit.

80 Table S1, Principal demographic characteristics of the patients, the origin of disease, number of dissected LNs, IHC

81 tumor markers, and serum tumor markers.

82

Tumor Markers			or ers	IHC Tumor Markers			Ti (Lar Lymj Nod		Prin	Ca		W	Н		Pa		
	CA15-3	CEA	CA125	Ki67	PR	ER	HER2/neu	le Non- Sentinel	ph Sentinel	umor Size gest Tumor)	nary Tumor Site	ıncer Type	Sex	eight (Kg)	[eight (m)	Age	atient ID#
	13	6.3	9.2	20%	Positive 40%	Positive	Positive (Score 3+)	2	1	19×19×5.5 mm ³	Right Breast; 4- 5 O'clock Retroareola.	MetastaInvasive Ductal Carcinoma	Female	69	1.62	58	1
	62	3.5	13.2	50-55%	Negative	Negative	Negative	1	1	42×17 mm ²	Left Breast Mass; 11 O'clock	Invasive Ductal Carcinoma	Female	72	1.59	31	2
	52	2.3	7.7	80%	Negative	Negative	Negative	1	1	40×25 mm ²	Left Breast Mass; Upper Outer Quadrant	Invasive Ductal Carcinoma	Female	60	1.50	46	3
	48	11.4	3.6	30-35%	Negative	Negative	Positive (Score 3+)	0	2	$30 \times 11 \text{ mm}^2$	Right Breast Mass, 9-10 O'clock	Invasive Ductal Carcinoma	Female	89	1.67	42	4
	33	10.2	8.2	18-20%	Positive 30%	Positive 90%	Negative	3	1	18×8 mm ²	Right Breast; 12 O'clock	Invasive Ductal Carcinoma	Female	108	1.73	44	- UN
	67	5.7	19.1	35%	Positive 10%	Positive 10%	Negative	2	1	21×11 mm ²	Right Breast Mass; Mid Zone	Invasive Ductal Carcinoma	Female	86	1.61	352	6
	14	1.1	5.6	8-10%	Positive 2-3%	Positive 95-99%	Negative (Score 1+)	1	1	26×20×17 mm ³	Right Breast Mass, 10 O'clock	Invasive Ductal Carcinoma	Female	73	1.74	51	7
	8.61	<0.1	11.0	40%	Positive 80%	Positive 100%	Positive (Score 2+); 10%	1	1	40×40 mm ²	Right Breast	Invasive Ductal Carcinoma	Female	81	1.58	42	8
	27	2.3	3.9	90%	Negative	Negative	Positive (Score 3+); 90%	0	2	26×25 mm²	Left Breast Mass; 2 O'clock	Invasive Ductal Carcinoma	Female	68	1.52	44	9
	51	9.0	8.8	40%	Positive 15%	Positive 25%	Positive (Score 2+)	1	2	34×25 mm ²	Left Breast Mass; Upper Outer Quadrant	Invasive Ductal Carcinoma	Female	93	1.65	32	10
	47	7.2	6.8	30-35%	Positive 10%	Positive 10%	Positive (Score 3+)	3	1	26×19×12 mm ³	Left Breast Mass; 3-5 O'clock	Invasive Ductal Carcinoma	Female	88	1.62	39	11

85 The lipid profile of the patients, including total cholesterol, triglyceride, low-density lipoprotein (LDL),

- 86 high-density lipoprotein (HDL), and very low-density lipoprotein (VLDL) has been checked by a blood
- 87 test. The normal distribution of each factor and the linear correlation between the R_{CT} and lipid profile
- 88 elements were checked by Kolmogorov-Smirnov test, and a simple scatter graph, respectively. Afterward,
- 89 the correlation between each lipid profile factor and R_{CT} value was analyzed using Pearson Correlation
- 90 Coefficient at the 2-tailed significance level of 0.01. The results demonstrate that there is no significant
- 91 correlation between the lipid profile status of the patients (including total cholesterol, triglyceride, LDL,
- 92 HDL, and VLDL) and their R_{CT} value (P > 0.01).
- 93 Table S2, Lipidic profile of four selected patients. Blood characterizations include complete blood count (CBC), blood
- 94 biochemistry, serum electrolytes, tumor markers, and liver enzymes have been analyzed in order to find any
- 95 correlation between the LDP response and blood analyses.

Elements	Patient #3	Patient #4	Patient #6	Patient #9							
CBC											
W.B.C	5.2	3	7.9	3.1							
R.B.C	5.18	4.41	4.38	3.04							
Hb	13.3	13	13	8.3							
Hct	40	37.8	38	25.9							
M.C.V	77.22	85.71	86.76	85.2							
M.C.H	25.68	29.48	29.68	27.3							
M.C.H.C	33.25	34.39	34.21	32.05							
RDW	13.6	15.6	13.5	18							
PLATELETS	219	427	296	162							
Blood Biochemistry											
FBS	96	91	88	109							
Urea	31	28	50	31							
Creat	0.8	0.9	1.2	0.8							
Chol	222	173	179	191							
TG	177	92	29	370							
HDL	44	54	57	33							
LDL	89	89	93	75							
VLDL	2.023	1.648	1.632	2.273							
LDL/HDL	2.023	1.648	1.632	2.273							
SGOT(AST)	28	37	18	32							
SGPT(ALT)	35	18	7	24							
ALP	268	173	222	187							
СРК	51	97	50	67							
LDH	256	389	252	339							
Protein (Total)	7.8	7.1	7.7	6.9							
gGT	32	20	15	16							
Albumin	4.6	5.5	5.1	3.8							
Bilirubin T&D	0.13	0.6	0.5	0.54							
ESR 1h	20	33	10	61							
BD	0.13	0.18	0.2	0.14							
	EI	ectrolytes	1.40	120							
Na	142	138	140	139							
K	4.59	4.8	4./	4.29							
Ca	9.8	9.9	9.8	9.1							
Ph	4.1	3.4	3.3	3.4							
Mg	1.8	1.9	1.9	1.6							
CDD (Quent)	Nagativa	Nagativa	Nagativa	Nogativo							
CKF (Qualit)	Tun	Negative	Inegative	Negative							
Tumor Marker CEA 2.2 11.4 1.1 2.2											
CA15-3	52	/18	1.1	2.3							
CA125	77	3.6	5.6	3.0							
Immunoassays-Thyroid Function											
Anti TPO 178											
Liver Enzymes											
РТ	13	12.5	13	12							
P.T.T	33	31	33	27							
INR	1	11	1	1.1							
	1		1								

Permanent pathology has been considered as the gold standard test for cancerous and normal lymph nodes diagnosis. As shown in the crosstab table (Figure S3, b), positive predictive value, negative predictive value, sensitivity, and specificity of the LDP were 97%, 100%, 100%, and 98%, respectively. Consequently, to evaluate these parameters' balance and determine how accurate and predicting LDP is, the receiver operating characteristics (ROC) test has been performed. The area under the curve (AUC) of the LDP was 0.986 (P-value < 0.001, 95% CI: 0.964-1.0). As the AUC of frozen pathology was 0.969 (P-value < 0.001, 95% CI: 0.93-1.0), it seems that LDP could be used as an appropriate diagnostic tool, same as frozen. It should be noted that the obtained values may be due to the small sample size, and more clinical trials with a higher number of participants should be conducted to identify these particular characteristics accurately.

Figure S3, a) Comparing lipidomics mass spectral profiles (m/z 600-900) of normal LN, primary tumor, and involved
LN. b) Confusion matrix for LDP predicted results based on pathological assays (as gold standard) for 122 in-vivo
samples from 41 patients. (TP: True Positive, FP: False Positive, TN: True Negative, and FN: False Negative). c)

116 Receiver operating characteristics (ROC) curve of LDP; the area under the curve (AUC) was 0.986, P-value < 0.001,

- *95% CI: 0.964-1.0.*

- 126 Table S3, Patients' LNs LDP results, frozen section, permanent pathology section, and LDP result evaluation in
- 127 comparison to permanent histopathological diagnosis in 45 SLNs and 77 non-sentinel LNs and a comparative chart
- 128 for the measured R_{CT} of patients' LNs. The red dashed line defines the border of normal and involved LNs at 110 k Ω .
- 129 True-positive and false-positive results have been specified in the entire green and red rows, respectively. Each test

130 was repeated for 5 times with STD: \pm 5%.

Detter		Type of		Fueren	LDD	Downanart	Response Percentage of		R _C				
ID#	Sample#	Lymph Node	$R_{CT}(\Omega)$	Pathology	Response	e Pathology	Permanent Pethology	Cancerous Cells (%)) 2×10 ⁵	4×10 ⁵	6×10 ⁵		
21	i	Sentinel	1.38E+05		-		TN			• •	·	-	
	ii	Non-sentinel	1.47E+05		-	-	TN						
22	i	Sentinel	1.40E+05	-	-	-	TN		Hereit h				
	ii	Non-sentinel	4.04E+05		-	-	TN						
23	i	Sentinel	1.86E+04	+	+	+	TP		• i				
	ii	Non-sentinel	1.52E+04	+	+	+	TP		•				
	iii	Non-sentinel	1.40E+05	-	-	-	TN						
	iv	Non-sentinel	1.42E+05	-	-	-	TN						
24	i	Sentinel	1.81E+05	-	-	-	TN						
	ii	Non-sentinel	5.08E+05	-	-	-	TN				H		
25	i	Sentinel	1.94E+04	+	+	+	TP		• i				
	ii	Non-sentinel	1.48E+04	+	+	+	TP						Cancer
	iii	Non-sentinel	1.44E+05	-	-	-	TN						curreer
	iv	Non-sentinel	5.00E+05	-	-	-	TN						Norm
26	i	Sentinel	1.62E+05	-	-	-	TN						
	ü	Sentinel	3.96E+05	-	-		TN						
27	i	Sentinel	3.80E+05	-		-	TN						10
	ü	Non-sentinel	1.44E+05	-	-	-	TN						
28	i	Sentinel	1.03E+04	+	+	+	TP						- 20
	ii	Non-sentinel	7.47E+04	+	+	+	TP						
	iii	Non-sentinel	1.41E+04	+	+	+	TP						
	iv	Non-sentinel	1.40E+05	-		-	TN					_	- 40
29	i	Sentinel	1.00E+03	+	+	+	TP						- 50
	ii	Non-sentinel	9.40E+04	-	- + -	+	TP	≤5					- 60
	iii	Non-sentinel	1.04E+04	+	+	+	TP					-	
30	i	Sentinel	1.31E+04	+	+	+	TP						- 70
	ii	Non-sentinel	2.60E+04	+	+	+	TP						- 80
	iii	Non-sentinel	1.42E+05	-	-	-	TN					a	00
	iv	Non-sentinel	1.38E+05	-	-	-	TN					X	50
31	i	Sentinel	9.62E+04	+	+	+	TP					L L	- 100
	ii	Non-sentinel	1.58E+05	-	-	-	TN					2	- 110
	iii	Non-sentinel	3.87E+05	-	-	-	TN						150
32	i	Sentinel	1.07E+04	+	+	+	TP						- 150
	ii	Non-sentinel	1.39E+04	+	+	+	TP		Li.				200
	iii	Non-sentinel	1.47E+05	-	-	-	TN						- 250
33	i	Sentinel	2.60E+04	+	+	+	TP						
	ii	Non-sentinel	3.39E+05	-			TN						300
	iii	Non-sentinel	4.89E+04	+	+	+	TP						- 350
	iv	Non-sentinel	3.59E+05				TN						400
34	i	Sentinel	1.65E+05	-	-	-	TN				-		400
	ii	Non-sentinel	5.13E+05	-	-	-	TN						- 450
35	i	Sentinel	3.65E+05	-	-	-	TN						- 500
	ii	Non-sentinel	1.45E+05	-	-	-	TN						_
36	i	Sentinel	3.55E+04	+	+	+	TP		.				
	ii	Non-sentinel	7.18E+04	+	+	+	TP		- ;				
	iii	Non-sentinel	5.10E+05		-	-	TN						
	iv	Non-sentinel	1.47E+05		-	-	TN						
37	i	Sentinel	1.96E+04	+	+	+	TP		• ;				
	ii	Non-sentinel	1.39E+05	-	-	-	TN		H				
	iii	Non-sentinel	1.34E+04	+	+	+	TP		•				
	iv	Non-sentinel	1.39E+05	-	-	-	TN						
38	i	Sentinel	5.67E+04	+	+	+	TP		• !			1	
	ii	Non-sentinel	1.48E+04	+	+	+	TP		•				
	iii	Non-sentinel	1.79E+05		-		TN						
39	i	Sentinel	1.30E+04	+	+	+	TP		•				
	ü	Non-sentinel	1.45E+05	-	-	-	TN						
	iii	Non-sentinel	3.88E+05		-	-	TN						
40	i	Sentinel	4.80E+05		-	-	TN				Н		
	ii	Non-sentinel	1.47E+05		_		TN						
41	i	Sentinel	2.60E+04	+	+	+	TP						
	ü	Non-sentinel	3 39E+05				TN						

The repeatability and stability of the LDP senor were investigated using different methods of *in-vitro* and *in-vivo* tests. For the *in-vitro* investigation, the sensor was tested by a lipidic solution (MDA-MB-231 media) 21 times. The sensor was gently rinsed using sequential washing with 70% methanol and deionized (DI) water, respectively, and then dried in nitrogen flow. Figure S4-a depicts the results of LDP repeatability tests with the lipidic solution. The LDP repeated the same results for 13 tests; afterward, the results (R_{CT}) decreased till test #18 that the senor lost its semi-circle response at all. The given results depict the LDP repeatability and stability in its response.

Animal lymph node (10 times, Figure S4-b) and dissected human lymph node (2 times, Figure S4-c) were examined for investigating *in-vivo* repeatability tests. Rabbit popliteal lymph node was tested 10 times. The LDP sensor was gently rinsed using sequential washing with 70% methanol and deionized (DI) water, respectively, and then dried in nitrogen flow. LDP results of animal lymph node depict the sensor repeat its response 8 times. LDP in the human axillary lymph node copied its first response exactly. Additionally, to follow the legal considerations on testing human samples *in-vivo* for our future aims, we will not use a sensor twice.

154

Figure S4, a_i) LDP response for the lipidic solution. The sensor was tested 21 times to investigate the repeatability of the responses. a_{ii}) The responses were almost the same as the first result till test #14. b_i) The responses of the LDP in testing animal lymph node. The responses were almost the same for 8 tests. b_{ii}) The results depict the same R_{CT} which

- 158 shows the reliability of the LDP sensor. c) The results of LDP in testing human axillary lymph node.
- 159

161 **References**

162

- 163 1 C. kun Lee, S. hwan Jeong, C. Jang, H. Bae, Y. H. Kim, I. Park, S. K. Kim 164 and G. Y. Koh, *Science (80-.).*, 2019, **363**, 644–649.
- 165 2 M. Chen and J. Huang, 2019, **2**, 183–191.
- 166 3 K. C. Corn, M. A. Windham and M. Rafat, Prog. Lipid Res., 2020, 101055.