Electronic Supplementary Material (ESI) for Biomaterials Science. This journal is © The Royal Society of Chemistry 2021

Supporting Information for

Asiaticoside-laden Silk Nanofiber Hydrogels to Regulate Inflammation and Angiogenesis for Scarless Skin Regeneration

Lutong Liu ^a , Zhaozhao Ding	a, Yan Yangb	, Zhen Zhang ^{b,*} ,	Qiang Lu ^{a,*} ,	, David L. Kaplan ^c
---	--------------	-------------------------------	---------------------------	--------------------------------

^aNational Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou

Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China

^bDepartment of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University

School of Medicine, Shanghai 200011, China

^cDepartment of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United

States

Corresponding author:

*Qiang Lu, E-mail: lvqiang78@suda.edu.cn

*Zhen Zhang, Email: zz6503@126.com

Table S1. AC loading efficiency (LE%), loading capacity (LC%) and Zeta potential (AC and silk nanofiber at ratio 1:1, Silk nanofiber concentration 2 wt%)

AC concentration	Loading efficiency	Loading capacity	Zeta potential
in methanol (mg/ml)	(LE%)	(LC%)	(mV)
1	65.77±0.25	3.28±0.02	39.50±2.13
2	70.77±1.01	7.08 ± 0.10	37.93±0.38
4	69.67±1.46	13.93±0.29	36.74±0.38

Figure S1. Injectable behavior of silk nanofiber hydrogels and AC-laden silk nanofiber hydrogels. SNF, silk nanofiber hydrogels; SNF-AC-0.7 mg/ml, AC-laden silk nanofiber hydrogel with AC 0.7 mg/ml; SNF-AC-1.4 mg/ml, AC-laden silk nanofiber hydrogel with AC 1.4 mg/ml; SNF-AC-2.8 mg/ml, AC-laden silk nanofiber hydrogel with AC 2.8 mg/ml.

Figure S2. Angiogenesis at wound sites at days 7 and 21 after the surgery: (a) Representative immunofluorescence images of DAPI (blue), CD31 (red) and α-SMA (green) stained tissue samples collected from the wounds at day 7. The scale bars were 200 μm; (b) Representative immunofluorescence images of DAPI (blue), CD31 (red) and α-SMA (green) stained tissue samples collected from the wounds at day 21. The scale bars were 200 μm; Control, 0.9 % NaCl solution, SNF2, 2 wt% of silk nanofiber hydrogels; AC250, AC solution with concentration of 250 μg/ml; SNF2-AC250, AC-laden silk nanofiber hydrogel (2 wt%) with AC concentration of 250 μg/ml; SNF2-AC500, AC-laden silk nanofiber hydrogel (2 wt%) with AC concentration of 500 μg/ml.

Figure S3. Analysis of collagen orientation degree of picrosirius red stained images at 21 day. Control, 0.9 % NaCl solution, SNF2, 2 wt% of silk nanofiber hydrogels; AC250, AC solution with concentration of 250 μ g/ml; AC500, AC solution with concentration of 500 μ g/ml; SNF2-AC250, AC-laden silk nanofiber hydrogel (2 wt%) with AC concentration of 250 μ g/ml; SNF2-AC500, AC-laden silk nanofiber hydrogel (2 wt%) with AC concentration of 500 μ g/ml.