PEGylated cationic nanoassemblies based on triblock copolymers to combine siRNA therapeutics with anticancer drugs

Claudia Conte,^a[†]* Giovanni Dal Poggetto,^b[†] Viola Schiano Di Cola,^a Annapina Russo,^a Francesca Ungaro,^a Giulia Russo,^a Paola Laurienzo^b* and Fabiana Quaglia^a

^{*a*} Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy. ^{*b*} Institute for Polymers, Composites and Biomaterials, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy

† equally contributed

*Corresponding authors claudia.conte@unina.it (C. Conte), paola.laurienzo@ipcb.cnr.it (P. Laurienzo)

Table S1. Molecular weight (Da) and polydispersity index (PDI) of mPEG, mPEG-pDMAEMA-N $_3$ and butynyl-PCL

Polymer	Mn	Mn	Mn	Mw	PDI
	(theoretical)	(¹ H NMR)	(GPC)	(GPC)	(GPC)
mPEG _{2k}	-	-	1870	2240	1.20
mPEG _{5k}	-	-	4980	5826	1.17
mPEG _{2k} pDMAEMA _{5.6k} -N ₃	6000*	5660*	7720	10036	1.32
mPEG _{5k} pDMAEMA _{15k} -N ₃	15000*	14934*	19853	24022	1.21
PCL ₇₅₀	750	762	753	895	1.18
PCL_{4k}	4000	4161	4376	5443	1.24

* molecular weights refer to pDMAEMA block

Figure S1. A) Polymerization of ε -CL initiated by 3-butyn-1-ol); B) ¹H-NMR spectrum of butynyl-PCL_{4k}

Figure S2. DSC thermograms of LLS (A) and SSL (B) copolymers showing first melting, crystallization from the melt and second melting peaks.

Figure S3. ¹H-NMR spectrum of SSS-NPs in $CDCl_3$ (A) and D_2O (B). In evidence signals relative to O-CH₂-CH₂-N (a) and O-CH₂-CH₂-N (b) protons of DMAEMA block, and O-CH₂-CH₂-O (c) protons of mPEG.

Figure S4. Hydrolytic degradation analyzed through gel permeation chromatography (refractive index detector) of SSL-NPs (A) and LLL-NPs (B).

Figure S5. Stability of siRNA/NP complexation in PBS at pH 7.4 and 5.5. (A) Size, polydispersity index and ζ of NPs complexed with TUB-siRNA at N/P ratio 10. B) siRNA complexation as evaluated by the gel retardation assay.

Figure S6. Full length western blots of Figure 7 with antibodies against indicated proteins. GAPDH was used as loading control. Mean densitometric values of three independent experiments are reported.